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Abstract

We present an easy-to-use formula for mean (space- and direction-average) specific intensity of radiation in uniform
spherical and cylindrical plasmas, which are not under external irradiation. This formula has high accuracy in any
spectral interval dn taken in continuum as well as within a spectral line of any profile, including overlapping lines and
lines on a pedestal of intense continuum in any spectral range. The formula considerably accelerates self-consistent
computations of the radiation field and the distribution of ions over their ionization degrees and quantum states. It may
also be used for computations of any radiation dependent-quantity, for example, the photoionization probability.
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INTRODUCTION

Estimates of plasma parameters, including the simplified
analysis of spectroscopic data, are often performed under
assumptions that, first, the plasma of interest has a simple
shape, and second, electron and ion densities and tempera-
tures are uniform within this shape. The plasma internal
energy E(t), radiation emissivity 1n (t), absorption coefficient
kn (t), and other characteristics depend on the distribution of
the ion number density, n(t), over ionization degrees and
quantum states. Let us denote this distribution nq (t) with
the index q running over quantum states of all ionization
degrees relevant to a problem, for example, from the
ground state of atom to bare nucleus.

In non-LTE plasmas, a computation of nq(t) requires an
integration of collisional-radiative rate equations, since the
distribution depends on the history of electron and ion den-
sities and temperatures, as well as on the history of the
mean specific intensity, �In (t), of the radiation (Mihalas &
Weibel-Mihalas, 1984; Griem, 1997; Fisher et al., 2007;
Rochau et al., 2008). The mean is defined as an average
over the plasma volume V and the full solid angle around
each segment dr of this volume:

�In (t) ¼
1

4pV

ð
(V)

dr
ð

(4p)
In(r, V, t)dV: (1)

The unit vector V shows the direction of a ray toward the
point r, and In (r, V, t) is the radiation specific intensity
along the ray. This intensity is the solution of the radiative
transfer equation (Mihalas & Weibel-Mihalas, 1984;
Griem, 1997)

@In(‘)
@‘
¼ 1n(‘)� k0n(‘)In(‘), (2)

where ‘ is the coordinate along the ray and k0n is the absorp-
tion coefficient corrected for the stimulated emission. Note
that in Eq. (1), the space-averaging is necessary because
the uniformity of the plasma density and temperatures does
not cause a uniformity of

Ð
(4p) In(r, V, t)dV within the

volume.
As far as nq (t) and �In (t) affect each other, they must be

computed self-consistently. The computations are time-
consuming because the five-fold integration (1) must be
repeated at each step in time for each point of the
photon-energy grid, which may be more than 104 points
(for satisfactory resolution of all spectral lines and continuum
edges). Most commonly, an acceleration of the computations
is done by means of the escape probability method (Rybicki,
1984; Griem, 1997), which excludes �In (t). For this, the net
radiative rate, corresponding to each couple of states, is
expressed via the escape factor. However, this expression is
justified only if the plasma opacity within a spectral line
profile is not affected by other transitions, while in reality
spectral lines stand on the continuum pedestal and overlap
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with the neighboring lines, especially at high density.
In particular, the opacity of satellites may be mainly due to
the resonance lines. Moreover, expressions for the escape
factor are available only for simple plasma shapes (e.g., a
cylinder of infinite height) and simple line profiles.

In this paper, we suggest a general method for acceleration
of the self-consistent computations of nq (t) and �In (t).
Namely, we use the general expressions (1) and (2) to
derive a simple formula for �In (t). This is done for spherical
plasmas and cylindrical plasmas of any height-to-diameter
ratio.

RADIATION IN CYLINDRICAL AND
SPHERICAL PLASMAS

We consider plasmas, for which the external irradiation is
negligible. Then, the solution of Eq. (2) is

In(r, V) ¼
1n

k0n
(1� e�k

0
nL(r,V)), (3)

where L(r, V) is the distance along the ray from the plasma
surface to the point r in the direction V.

Let us consider a cylindrical plasma of a radius R and a
height H. In cylindrical coordinates r, u, z, the plasma
volume is given by the conditions 0 , z , H and r , R. It
is convenient to introduce a typical specific intensity

IR
n ¼

1n

k0n
(1� e�k

0
nR),

and the ratio of �In to this typical intensity

Kc ¼
�In
IR
n

: (4)

Here the subscript c denotes a cylindrical plasma.
Expressions (1) and (3), together with the definition

d ~V ¼ sin(f)dfdc, yield

Kc ¼

ÐH
0 dz

Ð R
0 rdr

Ð 2p
0 du

Ð p
0 sin(f)df

Ð 2p
0 (1� e�k

0
nL(r,u,z,f,c))dc

4p2R2H(1� e�k0nR)
:

The right-hand side of this expression contains parameters
k0n, R, and H; however, numerical integrations show that Kc

depends on two dimensionless combinations of these three
parameters, namely, on the ratio H/R and the plasma
opacity in one direction, for instance, tR ¼ k0n R. Computed
function Kc (H/R, tR) is presented in Figure 1 for 35
values of H/R, namely for H/R ¼ 0.1 � 1.2m with m ¼
0, 1, . . . , 34. The substitution of tabulated Kc (H/R, tR) in
the definition (4) gives the final expression for the mean

specific intensity of radiation in cylindrical plasma

�In ¼
1n

k0n
(1� e�tR )Kc(H=R, tR): (5)

For a spherical plasma, a similar consideration results in
the expression

�In ¼
1n

k0n
(1� e�tR )Ks(tR), (6)

where the subscript s denotes a sphere and R is the radius.
Numerical integrations show that function Ks depends only
on tR ¼ k0n R. This dependence is presented in Figure 2.
An accuracy of the computations is better than 0.5% for
both Ks (tR) and Kc (H/R, tR). Tabulated functions Ks (tR)
and Kc (H/R, tR) will be sent upon request.

Fig. 1. Function Kc(H/R, tR) for various values of the H/R ratio, which is
indicated on part of the curves.

Fig. 2. Function Ks(tR).
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DISCUSSION AND CONCLUSIONS

For uniform spherical plasmas and uniform cylindrical
plasmas of any height-to-diameter ratio the five-fold inte-
gral (1) is converted to the simple expressions (6) and
(5), respectively. Utilization of these expressions (instead
of definitions (1) and (2)) substantially accelerates the self-
consistent computations of nq (t) and �In (t). Expressions (5)
and (6) provide high accuracy in description of radiation in
any spectral interval dn taken in continuum as well as
within spectral lines of any profile, including groups of
overlapping lines and lines above intense continuum in
any spectral range. These expressions may be used for
verification of collisional-radiative codes, written in
simpler approaches. Besides that, the explicit presentation
of �In (t) allows a computation of all radiation-dependent
quantities.

We wrote the ion number density n(t) and the distribution
nq (t) in terms of one chemical element. Complications in the
chemical composition of plasmas affect en (t) and k0n (t) with
no changes in expressions (5) and (6).

Although we assumed the uniformity of the electron and
ion temperatures within the plasma shape, the calculations
did not require any particular velocity distribution of free

electrons or ions. Therefore, expressions (5) and (6) remain
correct for uniform non-Maxwellian plasmas as well.
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