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Abstract

In the last two decades, several computational approaches for the Stark broadening in plasmas have been developed, where the motion of both
ions and electrons is simulated and their fields are approximated by using an effective DebyeeYukawa potential. This approximation, in general,
should be questioned when the number of plasma particles in the Debye sphere is about unity or below. For testing the applicability of this
approximation, molecular-dynamics simulations were performed, with all plasma particles interacting by the Coulomb potential, and the cor-
relations in the motion of the particles were analyzed. It was found that even for a moderately coupled plasma (Ne¼ 1018 cm�3, T¼ 1 eV, where
the number of electrons in the Debye sphere is z1.7), the collective effects play a significant role in the statistical and dynamical properties of
the microfields. Nevertheless, the corrections to the Ha profile are rather small. We also show that accounting for transitions with Dn s 0 is
crucial for proper determination of the shift, and to a lesser extent also of the width, of the spectral line.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Correlations between plasma particles have a significant ef-
fect on the Stark broadening of spectral lines in non-ideal plas-
mas. Corrections to the Holtsmark microfield distribution [1],
which is valid in the ideal-plasma limit, have been employed
since the studies of Mozer and Baranger [2] and Hooper [3].
A convenient parameter to characterize the deviation of a
plasma from ideality is the coupling parameter G, defined for
a single-species gas of charged particles with charge zs and
temperature T as

Gs ¼
z2

s e2

rskBT
; ð1Þ

where e is the electron charge, kB is the Boltzmann constant,
and the mean interparticle distance rs is related to the particle
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density Ns by rs¼ (4pNs/3)�1/3. This expression can be rewrit-
ten as

Gs ¼
1

3

�
rs

ls

�2

; ð2Þ

where ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBT=4pNse2z2

s Þ
p

is the Debye length. In
a weakly non-ideal plasma, the correction to the Coulomb field
according to the DebyeeHückel theory [4] is well justified,
yielding (in lieu of the Coulombic FC(r)¼ ezs/r

2)

FDðrÞ ¼ ezsð1þ r=lsÞexpð�r=lsÞ=r2: ð3Þ

A typical electric field FD at r¼ rs, for rs=ls � 1, can be
obtained by expanding Eq. (3):

FDzezs

�
1� 1

2
ðrs=lsÞ2

��
r2

s ¼
�

1� 3

2
Gs

�
FC: ð4Þ

The Debye screening will thus modify the linear Stark
effect, i.e., V ¼ �zs F

!
r! for a degenerate atomic system due
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to the dipole interaction, resulting in a relative decrease by
jDV=Vj ¼ ð3=2ÞGs. Therefore, the corrections to the Stark
line broadening due to the correlation effects are expected to
be of the order of the coupling-parameter value. This simple
analysis is readily generalized for one- or many-component
plasmas, by introducing cross-coupling parameters. For exam-
ple, it was found [5] that corrections to the widths of H- and
He-like ion lines are of the order of the radiator-perturber
cross-coupling Gr, p (we note that the definition of G used in
that reference differs from Eq. (1) by a factor of 3/2).

In addition to the modification of the quasistatic microfield
distribution, the plasma correlations cause changes of the
dynamic properties of the microfields, which also influence
the line broadening. However, the Stark broadening usually
depends rather weakly on a typical time scale of the perturba-
tion (which results in a weak temperature dependence). This
becomes especially apparent when overlapping collisions con-
stitute a major part of the total perturbation as, e.g., takes place
for high-n Balmer transitions [6].

The plasmas considered in Ref. [5] are weakly-coupled as
a whole; it is only the coupling between the radiators, the
high-Z ions that are assumed to be a minority component,
and the rest of the plasma that is not negligible. This is typical
for hot low-Z plasmas with traces of high-Z species, e.g., those
used for the investigations of plasmas in heated-foam experi-
ments [7]. A different situation occurs in low-temperature
dense hydrogen plasmas, where the radiatoreperturber inter-
actions are negligible as the radiator is neutral, whereas the in-
teractions between the perturbers and the corresponding
correlation effects play an important role.

Let us assume the following plasma parameters: the elec-
tron density Ne¼ 1018 cm�3, and the electron and ion temper-
atures Te¼ Ti¼ 1 eV. Then, the electron and ion plasma
couplings are Ge¼ Gi z 0.23, and the number of particles in
the Debye sphere is ND

(e)¼ ND
(i) z 1.7. Such values of the

plasma coupling are approached in several measurements of
Ha and Hb in warm dense plasmas [8e12]. For low-frequency
components of the plasma microfields, which can be shielded
efficiently by both electrons and protons, the corresponding
values for the plasma as a whole (i.e., for the total density
of the charged plasma particles Ntot¼ 2Ne) are Gtot z 0.29
and ND

(tot) z 1.2. Therefore, corrections to the line widths
and shifts of the order of 20e30% could be expected. How-
ever, for ND approaching unity, the applicability of the
DebyeeHückel theory becomes questionable.

2. Calculations

For the calculations a computer simulation method for the
Stark broadening in plasmas [5] is employed, where two types
of molecular-dynamics (MD) simulations are used to simulate
the plasma microfields. In the first one, to be here referred to
as the trivial MD (TMD) approach, the electron and proton
perturbers move along straight line trajectories, and the field
at the radiator is calculated as a sum of the Debye fields of
all perturbers. The protons are assumed to be screened by
both electrons and protons, so that their effective Debye length
is le=
ffiffiffi
2
p

. In the second approach, full MD (FMD) simulations
are performed, numerically solving a true N-body problem
where all perturbers interact by Coulomb forces, and the field
at the radiator is a sum of the Coulomb fields of all perturbers.
The FMD simulations are described in detail in Refs. [13,14].
For the calculations presented here, the motion of 400 particles
(200 electrons and 200 protons) was simulated in a cubic vol-
ume with mirror walls. The total time covered in the simula-
tion was 2.6 ns, of which the first 0.1 ns was not used for
the line shape calculations to allow for plasma thermalization.
Monitoring the total energy of the simulated particles provided
a check of the stability of the simulations. A minor, approxi-
mately linear in time, plasma heating was observed, resulting
in a plasma temperature of z1.05 eV at the end of the simu-
lation process which is due to the finite accuracy of the inte-
gration of the equations of motion.

In addition to the total field F
!

tot produced by all perturbers,
the fields produced separately by ions ðF

!
iÞ and electrons ðF

!
eÞ

were also recorded; clearly F
!

tot ¼ F
!

i þ F
!

e. These field com-
ponents were used for the correlation analysis presented. In
both TMD and FMD simulations, the radiator is assumed to
remain at the center of the simulation volume; the motion of
the radiator is accounted for by assigning reduced masses to
the perturbers. In solving the Schrödinger equation for the ra-
diator, only the dipole terms in the perturbation Hamiltonian
were retained. The inaccuracies associated with these assump-
tions are rather small for the plasma conditions assumed here,
as will be discussed below.

Obviously the FMD approach is more computationally expen-
sive, with the run time typically exceeding that of TMD by O(N ),
where N is the number of particles in the simulation. Therefore, if
the use of the TMD calculations can be justified, significantly
faster Stark-broadening calculations become possible.

3. Results and discussion

3.1. Collective correlation effects

In Fig. 1 we present a comparison between the Ha line
shapes calculated using the fields produced by the TMD and
FMD simulations. Also given in the figure are line shapes cal-
culated with the ion F

!
i and the electron F

!
e fields only. We

note that in the case of the FMD simulation, these partial fields
were obtained including in the simulation both ions and elec-
trons, and accounting for interactions between them.

In the figure we observe that the FMD simulations yield
larger broadening than the TMD in all cases, e.g., for electron
broadening the FMD FWHM is larger than the TMD FWHM
by z40%. However, the widths for the case when both elec-
trons and ions are included differ by about w6%. The source
of this apparent contradiction is a correlation between the mo-
tion, and, therefore, the fields, of electrons and ions. To inves-
tigate this in more detail we consider the static probability
distribution functions of Ftot, Fi, and Fe in the TMD and
FMD simulations, shown in Fig. 2. Here the probability distri-
bution functions of the total fields are rather similar, however,
the partial electron and ion fields in the FMD simulation are
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weighted toward higher fields than in the TMD simulation. For
example, while the FMD electron fields are weaker than in the
ideal-plasma limit given by the Holtsmark function, they are
nonetheless significantly stronger than the fields of the singly
shielded Debye quasi-particles, e.g., the distribution of the
TMD Fe. The difference between the FMD and TMD ion
fields is even larger.

We note that the FMD ion and electron microfield distribu-
tions are identical. Indeed, since the fields are ‘‘measured’’ on
a neutral radiator, the probability of a configuration of ions and
electrons is equal to that of the same configuration with the
ions and electrons exchanged, provided that the absolute
values of the charges and the energy distributions of ions
and electrons are the same, as is the case for the plasma con-
sidered here. Therefore, statistically, one may say that the
electrons shield the ions exactly like the ions shield the
electrons.
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Fig. 1. Comparison of the FMD and TMD results. The contributions of ions

and electrons are given separately. The line shapes are area-normalized.

Here and in the other figures, Ne¼ 1018 cm�3 and Te¼ Ti¼ 1 eV are assumed.
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Fig. 2. Comparison of the FMD and TMD microfield distributions. The distri-

butions of the total fields are scaled to the Holtsmark constant F0 correspond-

ing to the total density Ntot¼ 2Ne. The Holtsmark and the APEX-calculated

ion microfield distribution functions are also given.
On the other hand, the ion and electron field dynamics are
rather different, which can be illustrated using the field corre-
lation functions

CabðtÞ ¼
Z

dt f
!

aðtÞ$ f
!

bðtþ tÞ; ð5Þ

where

f
!

aðtÞ ¼
F
!

aðtÞ
FaðtÞ

; ð6Þ

and the indices a and b represent either electrons (e) or ions
(i). These auto- and cross-correlation functions are given in
Fig. 3.

Both Cii and Cee show similar behavior: constant for short
times and then dropping sharply. In fact, the typical ‘‘thresh-
old’’ times ti z 300 fs and te z 7 fs satisfy the expected rela-
tion ti=te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mp=me

p
. However, Cee falls to a finite value

(z0.1); it approaches zero only at t z ti. This is clearly due
to electroneion correlations indicated by Cei(t). Here, a signif-
icant anti-correlation between F

!
i and F

!
e is seen.1

A simple model can be used to explain these results. Let us
assume that the electron field F

!
e acquires, due to the elec-

troneion correlations, a part of the ion component

F
!

e ¼ F
!

eþ a F
!

i; ð7Þ

where F
!

e and F
!

i are independent (i.e., Cei ¼ 0). Then

Cee ¼ Ceeþ a2Cii: ð8Þ
It is readily seen that for te � t� ti

CeeðtÞza2CiiðtÞ; ð9Þ

and thus, for a2 � 1

az�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CeeðtÞ=Ceeð0Þ

p
z� 0:3: ð10Þ

Therefore, jaj is of the order of G, as expected and is a result
of Debye screening. Any motion of the relatively slow ions
near the radiator is partially compensated by the electrons.
As a result, a part of the slowly changing ion field gets ‘‘im-
printed’’ on the electron field.

We point out that the approach to the Debye shielding used
in the present TMD simulation (single shielding of the elec-
tron fields and double shielding of the ion fields) results, quite
plausibly, in a slightly underestimated fields. Indeed, the ion
microfield distribution calculated using the adjustable-param-
eter exponential approximation (APEX) method [15] corre-
sponds to fields that are stronger than the doubly shielded
TMD ion fields; yet the singly shielded approximation for
ions would result in fields which are too strong (see Fig. 2).
An approach similar to that of APEX can perhaps be devised

1 The noise at very large values of t is likely due to a poor statistic, since the

larger t the smaller is the number of the FðtÞ;Fðt þ tÞgf pairs. In addition,

artifacts due to the ions bouncing off the walls of the simulation volume are

also possible.
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with respect to the effective Debye length as assigned to the
TMD quasi-particles, which can result in an even better agree-
ment between the TMD- and FMD-based Stark line shape
calculations.

3.2. Three-body correlations

The plasma correlations are complex and essentially collec-
tive effects. Analyzing only a subset of these correlations without
reference to the total context (in particular, neglecting the Debye
screening effects) may, in general, be misleading. Nevertheless,
attempts to refine Stark-broadening calculations by considering
three-body correlations, namely the so-called ‘‘Acceleration of
Electrons by Ion Field’’ (AEIF) phenomenon [16], have been
made. Briefly, the argument is that a nearest-neighbor (NN)
ion alters the trajectories and velocities of electrons passing
near a radiator, and these changes are responsible for a reduc-
tion of the width and shift of spectral lines. This led to signif-
icant reductions in the case of Ha that were claimed even for
values of the plasma coupling parameter that are lower than
that considered here. First, and most straightforwardly, there
are also effects which were neglected that are similar in mag-
nitude, e.g., the altering of electron trajectories due to an NN
electron. Second, it was shown [17e19] that the corrections
are much smaller and, in fact, of the opposite sign. However,
this issue remains unresolved [20,21].2

A true MD simulation, i.e., allowing all perturbers to move,
cannot model the AEIF effect given the restrictive set of as-
sumptions in Ref. [16], namely, a single static NN ion at
a given distance R

!
from the radiator. Instead, to resolve the

issue we employ a variant of the TMD simulation run for elec-
trons only in which a single ion is placed at a distance R

!
from

the origin (where the radiator resides), and the interactions be-
tween the NN ion and the electrons (but not between the
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Fig. 3. Correlation between the FMD field components normalized such that

jCð0Þj ¼ 1. Typical electron and ion correlation times te and ti are indicated.

2 The ‘‘Conventional Theory’’ Stark widths in Figs. 1 and 2 of Ref. [21] are

half widths at half maximum (HWHM), rather than FWHM, i.e., they should

have been multiplied by a factor of two before comparison with the new

results.
electrons themselves) are allowed. The field at the radiator is
a sum of the Debye fields of all the electrons and the NN
ion field. Then, another simulation is performed, this time
with the interaction between the electrons and the NN ion
switched off (so that the only effect of the NN ion is its
F
!

NN ¼ �ðjejR
!
=R3Þ contribution to the total field). A set of

such simulations was repeated for several values of R; the re-
sults of a pair of runs are given in Fig. 4. It is seen that the in-
teractions between the NN ion and the electrons make the line
broader, with the FWHM value increasing by almost 30%. An-
other feature seen in the figure is a tiny decrease of the static
Stark splitting due to the electroneNN ion interactions. This is
a result of the screening, similar to the Debye effect.

The FWHM values with and without AEIF as a function of
the NN ion field are presented in Fig. 5. For weaker fields (of
the order of the Holtsmark field F0), corresponding to NN ion
distances comparable to the inter-ion spacing, the corrections
(w1%) are practically negligible. For stronger fields, the ef-
fect is more pronounced, however, the probability of such
fields, decreasing as w(F/F0)�5/2, is very low. Therefore, the
net effect after averaging over F is a minor extra broadening,
and should be even weaker for smaller values of G. This con-
firms the previous analysis [17e19].

3.3. Dn s 0 corrections

It has been shown theoretically [22] and confirmed by nu-
merical calculations [23] that in the case where energy levels
are pure-degenerate, i.e., neglecting interactions between
levels with different principal quantum numbers and neglect-
ing the spineorbit interactions, and assuming the dipole ap-
proximation and the independence of the density matrices of
the radiator and the perturbers, the Stark shift is identically
zero. In this work, we investigated the influence of the
Dn s 0, called ‘‘quenching’’, interactions numerically. The
FMD results are presented in Fig. 6, where the shift and
FWHM values are also given. Here, the shifts were determined
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as the mean weighted detunings
R

nLðnÞdn. When the quench-
ing interactions are excluded, there is no shift of the line, thus
confirming the previous findings. When the interactions be-
tween the initial and final levels of the transition are allowed,
a small blue shift is observed, with a negligible change in the
line width. The negligible influence on the line width of the in-
teractions between the n¼ 2 and n¼ 3 levels is not surprising,
given that the temperature of the perturbers is well below the
energy separation between the levels. When the n¼ 4 states
are added to the Hamiltonian, the shift of the line changes
its sign, and a noticeable (z8%) increase of the width is
seen. A further addition of the n¼ 5 states has a less pro-
nounced effect. Since the complexity of the calculations
growths dramatically with n, calculations with n> 5 were
not performed. However, assuming that the contribution of
the high-n levels scales asymptotically as w1/n3, the effect
of levels with n> 5 would result in a minor increase of the ab-
solute value of the line shift (about 10%) and in a practically
negligible increase of the line width.

Therefore, while for the line shift the Dn s 0 corrections
are crucial, the width of the Ha line is affected rather weakly
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Fig. 6. Influence of the interactions between quantum states with different n on

the Ha shape.
even for the relatively high plasma density. Furthermore,
except for the shift of the line as a whole, only a minor asym-
metry in the line core is observed (see Fig. 7, where shifts at
different relative to peak intensities are plotted). At the very
far ‘‘blue’’ wing, Dn> 10 FWHM, where the line intensity
falls below 1% of the peak value, the admixture of the
‘‘red’’ Hb wing breaks the line symmetry, as shown in
Fig. 8. In the figure one also sees the effect of the quenching
transitions on the Hb line shape, resulting mostly in slightly
different peak amplitudes, as expected [24]. We note that
stronger corrections to the Hb shape due to the quenching tran-
sitions even at significantly lower densities were previously re-
ported [25]. However, we were unable to reproduce these
results, and it is believed [26] that a computational problem
in Ref. [25] could be responsible for the disagreement. We
also note that, because no states with n> 5 were included in
the calculations, the Hg line shape (also shown in Fig. 8),
and especially its ‘‘blue’’ wing, may be inaccurate. In fact,
for such a high density, the Hg transition practically merges
with the continuum because of the plasma continuum
lowering.

3.4. Accuracy of the calculations

The total numerical errors of the line widths and shifts pre-
sented here are believed to be within 3% and 10%, respec-
tively. The method used to evaluate the calculation accuracy
is the same as in Ref. [6].

The use of a static radiator placed at a fixed point in the
simulation volume introduces a certain inaccuracy, largely
due to an underestimate of the ion dynamics effect. In trivial
MD simulations one compensates for this by ascribing reduced
masses to the perturbers. We performed the TMD calculations
twice, assuming for the protons m¼ 1 and then a reduced mass
m*¼ 0.5. In the latter case, the Ha widths are larger by about
5%, with no noticeable change in the shifts. Since the correc-
tion is rather small and the TMD and FMD results are very
close, we believe that corrections of the same order should
be applied to the FMD widths to account for the motion of
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the radiator. The widths given in the legend of Fig. 6 are cor-
rected thusly.

The steady continuous plasma heating in the FMD plasma
simulation, resulting from the finite accuracy of the N-body
calculations, as mentioned in Section 2, is of less concern.
This weak, z2.5% on average, increase of the temperature
during the process of the line shape calculations can be re-
sponsible for a line width inaccuracy of w1%.

Finally, we note that the higher-than-dipole multipole inter-
actions and the influence of the radiatoreperturber interactions
on the distribution function of the perturbers [27] were ne-
glected in the present calculations. For conditions considered
here, the effect of these phenomena on the line width are rather
minor. However, the respective corrections to the line shift
[28,29] are more significant, amounting in total to about
15%. Note that these two contributions to the line shift act
in the opposite directions, and thus partially cancel.

4. Conclusions

The influence of plasma correlation effects on the line
shape of the Ha transition was analyzed. In the intermediate
plasma coupling regime (the number of particles in the Debye
sphere z1), using the trivial molecular dynamic calculations
with non-interacting DebyeeYukawa quasi-particles produces
rather accurate results. Accounting for the transitions with
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Dn s 0 is crucial for proper determination of the shift, and
to a lesser extent of the width, of the spectral line.
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