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Fast magnetic-field penetration into plasmas due to the Hall field 
A. Fruchtman and Y. Maron 
Department of Nuclear Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

(Received 7 September 1990; accepted 22 March 1991) 

The enhancement of magnetic-field penetration into short-duration plasmas by the 
dissipationless Hall field is examined. Magnetic-field penetration along a background magnetic 
field is focused on, where the inductive Hall electric field enables the magnetic field to 
penetrate as a whistler wave, It is shown that the magnetic-field evolution, when governed 
simultaneously by both whistler wave propagation and collisional diffusion, is described 
by a diffusion equation with a complex diffusion coefficient. The imaginary part of this 
coefficient is proportional to the Hall resistivity associated with the background 
magnetic field. In the collisionless limit the governing equation is equivalent to the SchrGdinger 
equation for a free particle, and the magnetic field propagates the way a free-particle 
wave packet expands by dispersion rather than by diffusion, This study was motivated by the 
enhanced magnetic-field penetration recently observed in the anode plasma of a 
magnetically insulated ion diode. 

I. lNTRODUCTlON 

The magnetic-field penetration into plasmas is usually 
viewed as a relaxation process due to dissipation. Hence it 
is described as a diffusion process where the diffusion co- 
efficient is proportional to the dissipational (collisional) 
resistivity. We have recently measured the rate of mag- 
netic-field penetration into the anode plasma in the mag- 
netically insulated ion diode and have found it to be too 
high to be explained by classical resistivity (due to binary 
collisions).’ We have suggested that a dissipative mecha- 
nism different from binary collisions, such as the lower- 
hybrid drift instability, could cause the anomalous resistiv- 
ity.‘13 In this paper we examine the possibility that a 
dissipationless (collisionless) mechanism, the whistler 
wave that results from the Hall field, enhances the mag- 
netic-field penetration into plasmas in addition to instabil- 
ities. 

The effect of the Hall field on the behavior of plasmas 
has been considered often (see, for example, Refs. 4-8). 
We are interested in the effect of the Hall field on mag- 
netic-tield penetration into short-duration plasmas. Moti- 
vated by the diode measurements, we focus on the role of 
the Hall field in magnetic-field penetration into an already 
magnetized short-duration plasma. We study a simple one- 
dimensional problem where the penetrated plasma is im- 
mersed in a background magnetic field. If the background 
magnetic field has a component in the direction of pene- 
tration, then, for times so short that the ions are immobile 
the inductive Hall field enables the magnetic field to pen- 
etrate as a whistler wave. We show that the magnetic-field 
evolution, when governed simultaneously by both whistler 
wave propagation and collisional diffusion, is described by 
a diffusion equation with a complex diffusion coefficient. 
The real part of this coefficient is proportional to the usual 
collisional resistivity and determines the rate of the dissi- 
pative collisional diffusion. The imaginary part is propor- 
tional to what we call the Hall resistivity and determines 
the velocity of the dissipationless whistler wave. When this 

Hall resistivity is much larger than the collisional resistiv- 
ity, the rate of magnetic-field penetration scales with the 
Hall resistivity rather than with the collisional resistivity. 
In the collisionless limit the governing equation is equiva- 
lent to the Schrodinger equation for a free particle, and the 
magnetic field propagates the way a free-particle wave 
packet expands, by dispersion rather than by diffusion. The 
carrier of the magnetic field in our model problem, the 
whistler wave,“i’ * is dispersive and is characterized by elec- 
tron flow perpendicular to the direction of penetration. 

The presence of the whistler wave mechanism de- 
scribed here relies on the background magnetic field having 
a component in the direction of field penetration. In Sec. 
III we estimate the applied field component required to 
explain the fast field penetration in our diode to be 10% of 
the applied field. Since such a component is much too large 
to occur in our diode geometry we do not think that the 
fast magnetic-field penetration observed can be explained 
by this model. In general, the importance of the mecha- 
nism described here depends on the diode geometry, the 
magnetic-field intensity, and the diode plasma density and 
collisionality. 

In Sec. II we present the simplifying assumptions and 
derive the governing equation. In Sec. III we solve the 
equation for several examples. In the collisionless limit of 
our model the magnetic field is frozen into the electron 
fluid. The propagation of a whistler wave that satisfies the 
frozen-in law is discussed in Sec. IV. The influence of finite 
system dimensions, two-dimensional effects, and ion mo- 
tion on the solutions of the idealized model problem are 
also discussed. 

II. THE MODEL 

For times much shorter than the ion cyclotron period, 
the process might be too fast for the ions to move. We thus 
assume an infinite mass for the ions and consider the elec- 
tron dynamics only. The velocity scaling we adopt, there- 
fore, is 1 v, f E [ ve - vii > 1 vi ( where v, and vi are the 
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electron and ion velocities. On the other hand, we assume 
that the time scale is much longer than the electron-cyclo- 
tron period, i.e., the process is slow enough so that we can 
neglect the electron inertia in the electron momentum 
equation. If we neglect also pressure gradients, Ohm’s law, 
which follows the electron momentum equation, becomes 

E=rlcj + [ (jXB)hecl, (1) 

where qC is the collisional resistivity, E and B are the elec- 
tric and magnetic fields, j is the current, n the density, - e 
the electron charge, and c the velocity of light in vacuum. 
We employed the relation j = - nev, which follows the 
above neglect of the ion velocity. The second term on the 
right-hand side is the Hall field, which is perpendicular to 
the current and therefore dissipationless. 

For plasmas dense enough, we neglect the displace- 
ment current and obtain from Faraday’s law 

aB bc 
ar=4P V’B - ;VX [ (&W)XB] . (2) 

Equation (2) governs the evolution of the magnetic field in 
short-duration plasmas, in the presence of electron motion 
only. The first term on the right-hand side of the equation 
is the source of collisional diffusion. The second term re- 
sults from the Hall field. In the present paper we examine 
the case in which the Hall field enables the magnetic field 
to penetrate as a whistler wave along a background mag- 
netic field. Other mechanisms for the magnetic-field evolu- 
tion that result from the Hall field in Eq. (2) are described 
in a parallel paper.” The magnetic-field evolution, when 
governed by the electron dynamics, has been studied ex- 
tensively in the Soviet literature.” 

In the present case a magnetic field due to external 
currents is already present in the plasma, and the finite 
Hall electric field due to this magnetic field affects the 
penetration of an additional magnetic field. Such is the case 
in certain megnetically insulated ion diodes,’ in which the 
magnetic field, generated by the electron sheath in the di- 
ode gap, penetrates the anode plasma, that is already pen- 
etrated by the magnetic field externally applied in the diode 
prior to the high-voltage pulse. This penetration and the 
accompanying loss of magnetic flux in the acceleration gap 
have a significant effect on the diode operation.‘3-15 The 
insulating magnetic field is supposed to be parallel to the 
anode plasma surface and perpendicular to the direction of 
penetration. However, in the present model we treat a sit- 
uation in which this field has a component in the direction 
of penetration. The presence of such a component is an 
essential ingredient in the mechanism of penetration, the 
whistler wave mechanism, we describe here. 

For simplicity, we analyze the simple 1-D problem of a 
magnetic field B,(x,t) which penetrates a plasma im- 
mersed in a uniform magnetic field B,,. We assume that all 
the quantities vary along x only. If the density is uniform, 
Eq. (2) becomes 

aB c=Tj a2B 
-=- at ,.J~-&~P qEr]c+zqH, (3) 

where B = B,, + iB*, and qH=Box/nec is the Hall resis- 
tivity. Equation (3) is the diffusion equation with a com- 
plex diffusion coefficient. The term “Hall resistivity” does 
not imply dissipation. We use the term “resistivity” since 
the rate of magnetic-field evolution scales with this Hall 
resistivity similarly to the way collisional diffusion scales 
with collisional resistivity. When the Hall resistivity is 
zero, the equations for B1, and B,, are decoupled, and for 
each component the usual diffusion equation with a real 
diffusion coefficient is recovered. In the other limit, when 
the collisional resistivity is zero, the diffusion coefficient is 
purely imaginary, and the resulting equation 

f3B ic2qH a2B -=- 
at 47r dx2 (4) 

is equivalent to the 1-D Schrodinger equation for a free 
particle. In this limiting case that vC = 0, Eq. (3) can be 
written also as 

2 

( ) 

2 a’B 
c!$- 2 -.$ (5) 

and By satisfies dB,/& = ( c2r],/4n) ( a2Bz/a?). Equation 
(5)) known as the beam equation, governs the vibrations of 
a musical fork.16 Equations (4) and (5) describe whistler 
waves in the limits of low frequency (relative to the elec- 
tron-cyclotron frequency) and cold plasma. Whistler 
waves or helicons were observed in the ionosphere” and in 
laboratory plasmas’8*‘9 as well as in solids.20 They have 
been shown by Haines et a1.21 to enhance current penetra- 
tion in a toroidal Hall accelerator. The magnetic-field am- 
plitude of those waves is much smaller than the back- 
ground magnetic-field amplitude. In our idealized 1-D case 
these equations turn out to be linear without assuming that 
B,,, is much larger than 1 BI . Therefore, these equations 
may describe magnetic-field penetration into a plasma im- 
mersed in even a smaller magnetic field on a time scale of 
less than one oscillation period. However, if Box is too 
small one might have to consider also small two-dimen- 
sional effects which could make the problem nonlinear. 

The amount of heat dissipated is calculated by using 
the Poynting theorem, which, following Eq. (3), is 

-&Im(B*E) I~~~=& I,:’ dx !-$ + JI dx %lA21 
(6) 

where j=jZ + d,,, E=E, + iE,, and j = - (id4rr) (aB/ 
ax), E=qj. Note that j, is zero. 

Ill. EXAMPLES 

In the rest of this paper we solve Eq. (3) for few 
standard sets of boundary conditions of the diffusion equa- 
tion. These solutions will help us in illuminating the dif- 
ference between the diffusion of the magnetic field due to 
collisional resistivity and the whistler wave penetration of 
the magnetic field due to the Hall resistivity. In the first 
two cases we assume that at t = 0, the magnetic field 
B(x,O) is zero, and that at t>O a fixed magnetic field B,,-, is 
imposed at x = 0, namely B(O,t>O) =BIO. The first of the 
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Magnetic Field Components in Semi-infinite 
Magnetized and Unmagnetized Plasmas 
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FIG. 1. The magnetic-field components &,I/&,,, B,JB,,, and (B(/B,, vs 
(x/c)(?r/q,t) “* for a semi-infinite magnetized plasma (p= 10). Also 
shown is B,/B,, for an unmagnetized plasma (p = 0). 

two cases is of a semi-infinite plasma slab, and the second 
is of a finite plasma slab. 

A. Semi-infinite plasma 

The first case of a semi-infinite plasma is an approxi- 
mation for the case that the depth of penetration is much 
smaller than the plasma thickness. The magnetic field is 
described by a standard solution of the diffusion equation 

B(x>O,t>O) =Bla erfc[ (x/c) (7rhp) *I21 , (7) 
where the argument of the complementary error function 
is complex. Figure 1 shows BI,/&, B1,JJBlO, and IB(/B,, 
as a function of Lj = (x/c) ( r/qct) “2. In three of the curves 
the value of /3( = T&Q.) is 10. For such a large value of fi, 
the penetration is dominated by the Hall resistivity. One 
curve shows B1,/B10 for /? = 0 (no Hall resistivity ). In this 
case of usual diffusion BI, is zero. The special features of 
the Hall-induced magnetic-field penetration are clear from 
the figure. When &l the penetration is much faster, is 
accompanied by oscillations of the magnetic field, and the 
polarization is circular. 

In the Weizmann ion diode,’ for example, the classical 
resistivity is estimated to be 4X lo- l5 set ( T, = 8 eV). In 
order to explain the fast magnetic-field penetration in our 
diode, the component of the magnetic field in the direction 
of penetration Box should be about 700 G, which is nearly 
10% of the magnitude of the insulating field. Such a com- 
ponent of the applied magnetic field perpendicular to the 
electrodes is much larger than expected for our diode ge- 
ometry. The mechanism we discuss here does not seem, 
therefore, to play a dominant role in our diode. 

The current j = - [iBlo/(2rr)(77t)1’2]e-xZn’c20r is 
also oscillatory and circularly polarized. The maximal cur- 
rent at a certain position /jImax and the time t,,, at which 
this current is reached are 

1.0 

0.8 

Current Versus Time for Various p’s 

/z (36 
&,j, 

4O 0.4 

0.2 

00 
0 I 2 3 4 

C2%’ 
.-3-F- 

FIG. 2. Normalized current versus normalized time for various p’s in a 
semi-infinite plasma. 

t m m  = 2.&/C2~,( 1 + p2,. (8) 
In an unmagnetized plasma (p< 1) the maximal current at 
each x is the same (because the pulse in our example is 
infinite in time) while in a magnetized plasma (j+l) the 
maximal current is proportional to fi”‘. The dependence of 
t max on qc is not monotonic. When vc ) qH and the plasma 
is collisional, t max grows as rle decreases. However, when 
Q becomes so small that rlc 4 THY tmax decreases with the 
decrease in qc. In the collisionless limit (Q = O), the cur- 
rent is infinite at z = 0 everywhere in the plasma, and its 
amplitude is uniform in the plasma at I > 0, decreasing as 
ljl = (B&2n)(q$) - 1’2. A nonzero dissipation 
(qe#O) makes the current causal. The magnetic field nev- 
ertheless decreases for x-+ CO even when qc = 0 and is 

where C(z) and S(z) are Fre lel integrals. Figure 2 dem- 
onstrates the time dependence of jjj by presenting 
(2n3’*x/cBl*) jjl as a function of c2~,t/x2r for various 
values of P. In the case of a magnetized plasma (p> l), the 
current becomes peaked when fi is increased. 

c[ 5( g2] 
(9) 

The instantaneous energy flux into the plasma at x = 0 
is (c/G?) (B:o/f”2)Re($‘2) while the rate of total heat- 
ing is (c/83?) (B&/t”2)$‘2( l/ 4). The heating here 
does not depend on the Hall resistivity, but the magnetic 
energy entered into the plasma is enhanced. The Hall re- 
sistivity increases the coupling between the plasma and the 
source. 

6. Finite plasma slab 

The second case is of a finite plasma slab, where the 
surface at x = a is of an infinite conductivity. With this 
boundary condition we model, for example, the metal an- 
ode in the magnetically insulated ion diode, whose conduc- 
tivity is much higher than the plasma conductivity. The 
assumption of a perfect conductor at x = a implies that 
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Finite Slab (r],=O) Finite Slab Energy Flux (EF) and Heating(H) 

-I 
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X-a 

FIG. 3. Magnetic-field components versus x for various times in a colli- 
sion& finite plasma slab. 

E( EE, + LY,,) = 0 there. The current, therefore, in the 
plasma is zero at x = a and thus (L%/c~x) (a~) = 0. If the 
magnetic-field flux between the cathode and the anode is 
constant and the diode gap is much wider than the plasma 
thickness, the magnetic field on the plasma boundary is 
approximately constant. Therefore, the rest of the bound- 
ary conditions are as before, B(x,O) = 0 for O<x<a, and 
B(O,t) = B,, for f>O. The magnetic field in the plasma is 

B(x,t) =B,o 1 - 4 2 
i 

1 
n- ndJ (2n+l) 

(10) 

The usual process of a relaxation to a steady-state equilib- 
rium is accompanied by oscillations, again reflecting the 
dissipationless wavelike effect of the Hall field. For a col- 
lisionless plasma, when Q = 0, the solution is periodic with 
period to = 32a2d/c2qH. Figure 3 shows B,,/&, and B,J 
Blo for t = td4, t,J2, 3td4, and to. The dissipation (when 
qC#O) makes these whistler oscillations damped. The 
plasma is insulated at the conductor and the energy flux 
there is zero. The oscillatory energy flux into the plasma at 
x = 0, until the time t, is 

dt’&Im(B*E)(x=O) 

[ 1 --xp( -w,~)cosb,w) I, 

(11) 

o.or I I 4 
0 I 2 3 

c277ct 
16rra’ 

FIG. 4. Normalized energy flux (Zc/&a)J& dt’ Im(B*E) and heating 
(gn/&o)i& dt’Sg dx vel j12 versus normalized time for various $s in a 
finite plasma slab. 

where s,-ITC’(~~ + 1)2/16a2. The heating of the plasma 
until t is 

X [ 1 -exp( -22s,qCt)]. (12) 
The rate of heating is independent of the Hall resistivity. 
The rate of change of the magnetic-field energy stored in 
the plasma is the difference of the energies in Eqs. ( 10) and 
( 11) (as can be easily verified). The magnetic field is al- 
ternately pumped into and out of the plasma. Figure 4 
shows the normalized energy flux into the plasma 
(2c/B&a)S~ dt’ Im( B*E) at x = 0 and the normalized 
heating (87r/B:@)Sh dt’Sz dx TJ=]~]~ as a function of the 
normalized time ( c2/1 6n-a2) 77~ for various values of p. We 
see that for larger p the energy flux is more oscillatory. The 
total heating is 

s s 
mdt a 

0 0 
dW12=$ $ (2n: 1)1=$, 

(13) 
is independent of the resistivity, and is equal to the total 
magnetic-field energy entered into the plasma slab. 

C. Oscillating field 

A case different from the transient problem of mag- 
netic-field penetration is the steady-state oscillating mag- 
netic field in a plasma due to an oscillating source of the 
form B(x = 0~) = Bloc - iof. The steady-state solution in 
the plasma is 

B1 (x>O,t) =Bloe - (47rio/q)“2x - iot 

For /3( 1, we obtain the usual collisional skin depth 

a=-& (:)‘“=t ( q2, 
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where U, = ne2r],/m is the collision frequency, and m is the 
electron mass. However, for large /3 the skin depth be- 
comes 

Magnetic Field Wave Packet 

&2.$ (y”‘=k (Fy”, (14) 

where o, = eBox/mc. The skin depth thus may be broad- 
ened substantially by the whistler waves if the wave is 
propagating along a magnetic field. The energy conserva- 
tion equation (6) averaged over 271-/w and integrated on x 
from zero to infinity shows that all the energy flux is trans- 
ferred into heat. The total energy flux (or the total heating 
rate) is 

-&Im(B*E)(x=O)= 

cB;e ‘I2 
= (4T)3/2 1m[(i?l)“2]+ (15) 

When 8% 1, the heating is [cBqowii2/ v’?( 47~)~‘~]~7)‘~ while 
for /3% 1 the heating is [~Bf~o’/~/(4~)~‘~]ljt~~ and is inde- 
pendent of the collision frequency. Such an increase in the 
heating due to Hall field is expected when the magnetic 
energy is delivered over a finite pulse length, as it is indeed 
in practice (in diodes, for example), or when it is periodic 
(as in this example). 

5. Expansion of a magnetic-field wave packet 

In equivalence to the free-wave packet governed by the 
Schrodinger equation,22 we write the expansion in time of 
a magnetic-field minimum packet, 

B(xJ) = (Zn) l/4 
A!!- (Ax+gl.LJ”2 

X2 

Xexp -4[ (AX)2 + (c%7t/4n)] (16) 

The magnetic field flux S”_ ,dx B(x,t) is conserved for any 
~7. The time-dependent magnetic-field energy in the wave 
packet is 

I 
m dx PI2 B:o Ax ~=- 

81r 87r [ Ax2 + ( c2qJ47r)t] “’ ’ (17) 
-cc 

The total magnetic-field energy is conserved only if rlc 
= 0 (as does the total position probability in the solution of 
the Schrodinger equation) and decreases if there is dissi- 
pation. Thus, the Hall resistivity couples B,, and B, and 
enables a magnetic-field propagation that conserves both 
the magnetic-field flux and the magnetic-field energy. 

We note that for t < 0 the wave packet does not expand 
but rather it shrinks. Figure 5 shows the evolution of the 
normalized energy w= (277) 1’2A~[ B(x,f) ( ‘/B& as a func- 
tion of x/Ax for normalized times 
= [47r(A~)~/c~& = - 6, - 4, - 2, and 0. Note thay 
the evolution of the energy is symmetrical around t = 0. 

-1 
0.3- 
0.2- 

-20 -10 0 10 20 
X/AX 

FIG. 5. The normalized magnetic-field energy w vs x/Ax for various 
times T. 

IV. DiSCUSSlON 

First we discuss the evolution of a whistler wave that 
satisfies the frozen-in law. Without dissipation (when 
qc = 0) the governing equations can be written as 

and 

(4n/c)cnv,= - VXB. (19) 
Equation ( 18) describes the freezing of the magnetic-field 
lines into the electron fluid. Nevertheless, in the 1-D prob- 
lem we solved, the magnetic field propagates in the x di- 
rection even though there is no electron flow in that direc- 
tion. It is easy to understand how that happens. Assume 
that at r = 0 the magnetic field is only the uniform field B, 
in the x direction. Consider a rectangular loop attached to 
the electron flow through which the initial magnetic-field 
flux &, is zero. Denote by z the direction perpendicular to 
the loop plane and by Ax the (infinitesimal) side length in 
the x direction. At times larger than zero the loop sides 
move in the y and z directions. The displacement of a loop 
element in the z direction is &(x). The change of the mag- 
netic field flux per unit length in the y direction at t> 0 is 

4 (x,t) = B&.x + BOA&, (20) 
where 

Uzkt) =&Xx + A.x,t) - &(x,t). 

This displacement is 

dt’oez(x,t’) =-& 
s 

I aBY 
0 

dt’ ax (xJ’). (21) 

Therefore 

4, L$=+= ---Ax, Bo (22) 
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where we used the real part of Eq. (4). The increasing flux 
of the penetrating magnetic field is thus balanced by an 
increasing opposite flux of the background magnetic field 
resulting from the loop rotation. The flux change A+(x,t) 
is zero. The total magnetic-field flux through the loop thus 
remains constant. 

The above description is not necessarily valid at the 
plasma boundaries in the y and z directions. For example, 
perfect conductors at the perpendicular boundaries that 
emit or absorb electrons would force those electrons to 
cross magnetic-field flux surfaces. This would be impossi- 
ble in the absence of collisional resistivity. In our model we 
assumed that the plasma boundaries allow our solution to 
hold in the bulk of the plasma and we postpone the dis- 
cussion on this issue to a later study. 

The purpose of the simple 1-D model was to demon- 
strate the basic physical effect. It also approximates the 
behavior of systems where the variation with one space 
coordinate is much stronger than with the other space co- 
ordinates. Such is the case in the anode plasma whose 
thickness is much smaller than its dimensions parallel to 
the anode. However, even for the anode plasma some ques- 
tions remain open: What is the path for the return current 
for the diamagnetic current which has both y and z com- 
ponents, what is the relative influence of the effect de- 
scribed here, which results from a small perpendicular 
component, with respect to the effects which result from 
small deviations from 1-D slab geometry, etc. Also, as said 
above, the applied field component perpendicular to the 
anode has to be sufficiently large in order to significantly 
affect the field penetration. 

The behavior of plasmas when some of our assump- 
tions are not valid will be different from the behavior we 
described. The magnetic-field penetration in the 1-D geom- 
etry turned out to be linear. Two-dimensional effects will 
make the problem nonlinear. The magnetic-field behavior 
governed by Eq. (2) probably will be modified even for 
propagation along a background magnetic field. We fo- 
cused here on the short time before the ions respond and 
are pushed by the magnetic pressure. It is important to 
understand the transition from field penetration to ion mo- 

tion, a motion that is a central phenomenon in plasma 
devices. Some of the issues mentioned above will be ad- 
dressed in future studies. 
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