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Abstract

The structure and emergent flux of hydrogen atmosphere white dwarfs depend on the opacity of the Ly« and Lyf3
spectral lines. The opacity here is set by the strength and broadening of these lines; the latter is dictated by the far
line wing, which is in the “quasi-static” limit of electron broadening, placing it in the incomplete collision regime,
and describes the transient parts of electron and ion collisions. These transient stages of the collision form
resonances: In the case of ions, they manifest as molecular resonances, while for electrons they are H™ resonances,
both of which can only be captured quantum-mechanically. Quantum-mechanical calculations have historically
preserved only a handful of broadening terms that are most important near the center of the line. However, in the
wings of the line, the previously neglected terms that describe the transient stages of the collision need to be
included. This requirement arises because, in the line wings, the broadening from the ls ground state, which is
generally assumed to be extremely small compared to the broadening of the upper state, is no longer negligible
within a quantum-mechanical model that takes into account exchange interactions. The inclusion of all the transient
terms results in asymmetries and extra broadening. The increased broadening of Ly« increases the opacity at the
energy where most of the flux leaves the star. The broader Ly« lines also impact the visible flux, raising it by an
amount that exceeds previously estimated errors.

Unified Astronomy Thesaurus concepts: Stellar spectral lines (1630); Atomic physics (2063); Collision physics

(2065); Atomic spectroscopy (2099); DA stars (348); White dwarf stars (1799)

1. Introduction

White dwarfs (WDs) represent the final evolutionary stage of
most stars (>97%) in our Universe (H. M. Van Horn 2015). These
stars are important for many investigations in astronomy, including
the initial-final mass relation (e.g., J. S. Kalirai et al. 2008;
K. A. Williams et al. 2009), cosmochronology (D. E. Winget et al.
1987; G. Fontaine et al. 2001), and exoplanetary interior
compositions (M. Jura 2003; B. Zuckerman et al. 2007). In
addition, WDs can be used as physics laboratories for
studying exotic processes such as crystallization (e.g.,
H. M. van Horn 1968; P.-E. Tremblay et al. 2019), as well
as neutrino (D. E. Winget et al. 2004) and axion (e.g.,
A. Bischoff-Kim et al. 2008) emission. Due to their simple
spectra, hot WDs are also used to calibrate major observa-
tories and instruments, such as the Hubble Space Telescope
(HST; G. Narayan et al. 2019; R. C. Bohlin et al. 2020) and
the James Webb Space Telescope (K. D. Gordon et al. 2022).
For HST, the quoted error estimates, which rely on model
atmospheres, are under 1%. However, their astrophysical
usefulness depends on our ability to infer accurate stellar
masses and temperatures, while their usefulness as calibration
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sources depends on accurate calculations of their emergent
flux distribution.

There are known problems when it comes to modeling UV
and visible WD spectra. S. Sahu et al. (2023) discuss how the
effective temperature of UV spectra (measured from the
Cosmic Origins Spectrograph, hereafter COS, on HST) is
systematically lower by a few percent than temperatures
obtained via visible spectroscopy and photometry. This
offset also translates to the derived masses, where masses
derived from UV spectra were ~0.052 + 0.005M, lower than
spectroscopic masses and ~0.024 £ 0.003M_ lower than
photometric masses. Given that the mean mass of WDs is
~0.6 M., these discrepancies translate into typical mass errors
of 9% and 4%, respectively. The problem presented by S. Sahu
et al. (2023) motivates a reexamination of the line broadening.

1.1. Sensitivity of Atmosphere Models to Lya Opacity

For WDs with temperatures below <25,000 K and greater
than 29000 K, most of the radiation flux emerges around the
Lyman series. The Lya line is one of the strongest opacity
sources in the spectrum. For cooler WDs below <9000 K, the
peak flux of the star moves out of the Lyman series to longer
wavelengths. Nevertheless, the Ly« red wing is still a dominant
opacity source (D. Saumon et al. 2022). It is for this reason that
this work focuses on the Ly« line specifically.

The structure of atmosphere models will, therefore, be
sensitive to the calculated opacity of Lya, which is determined,
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Figure 1. Demonstration of the impact on white dwarf spectra by including the H} resonances in the spectral line shapes. The HJ resonances not only appear in the
UV, but the increased opacity also causes a redistribution of flux down to the visible range. The resulting increase in the visible flux is between 0.5%—1.0%, which is a
systematic change that is of order of the error estimated by G. Narayan et al. (2019) and R. C. Bohlin et al. (2020). Even though these resonances are 10°~10° times
weaker than the core intensity, these details are required for accurate atmosphere structure. Further, the line shapes in the emergent spectrum have changed.

specifically, by the strength and broadening of the line. The
strength is largely dominated by the temperature, and non—local
thermodynamic equilibrium corrections do not significantly
impact this quantity. Therefore, our focus will be on the line
broadening. We present a relevant demonstration in Figure 1
where the added opacity from the HJ resonances (calculated by
N. F. Allard et al. 1999) increases the flux in the visible range.
This effect has been previously recognized by P. E. Tremblay
& P. Bergeron (2009), who stated that the Lyman opacity “also
affects the thermodynamic structure of the atmosphere.” This is
because an increased opacity in the region of high flux (UV)
causes the so-called back-warming, that is an increased local
temperature in the deep layers where the visible flux is formed,
and thus to increase flux in this region. The other way to
explain it is that an increased opacity in the UV leads to a
decreased flux in this region, so in order to keep the total flux
constant, it must be increased elsewhere, in this case the optical
and IR regions. However, while the changes in the opacity in
Lya are important for the profile of the line itself, it is relatively
minor when looking at the whole UV spectrum. Therefore, the
resulting back-warming effect, and the increase of the flux in
the optical range, is small. For a detailed discussion, refer to,
e.g., . Hubeny & D. Mihalas (2014, Section 17.6 and 18.5).
This same effect was found by T. A. Gomez et al. (2021),
where increased broadening from new quantum-mechanical
line-shape calculations resulted in a change in the atmosphere
structure and a change in the predicted flux distribution,
emphasizing that the atmosphere structure of a WD is sensitive
to the wing opacity of the Lyman lines.

A change in the model flux distribution of WDs from the UV
to the visible will affect many different aspects of astronomy.
The first would be the impact on HST calibrations, as
mentioned above. The second would be on the determination
of WD temperatures and masses, both spectroscopically and
photometrically. Changes in our ability to determine WD
masses affect our understanding of late-stage stellar evolution
as well as cosmochronology. Lastly, we want to mention the
impact that changing WD fluxes has on interstellar medium
(ISM) research. WDs are used as background sources to
determine the structure and chemical abundances of the ISM
(e.g., J. Dupuis et al. 1995; N. Lehner et al. 2003; B. E. Wood

et al. 2005), and changing the model flux distribution could
change the determined abundances.

Due to all of these applications, it is therefore imperative that
the broadening of the low n Lyman transitions (i.e., Lya and
Lyp) is accurate for atmosphere structure calculations. And, by
extension, accurate Ly« line shapes are necessary in order to
accurately model (and interpret) both the UV and visible
spectra of WDs. The importance of Lya red-wing opacity in
cool WDs (e.g., L. Frommhold 1993; P. M. Kowalski &
D. Saumon 2006; D. Saumon et al. 2014) has been well
established. However, there has not been the same attention
given to the broadening of Ly« in hotter WDs. Therefore, a
reexamination of Ly« in hotter WDs is warranted.

1.2. Different Approaches to Line-shape Calculations and
Uncertainties in Ly

It is important to point out that, unfortunately, there is
significant disagreement between different line-shape codes for
Lya. This stems largely from the different approaches to line-
shape calculations and the various approximations used, which
are valid in some regimes but not others. The first models
developed are ‘“‘semianalytic,” meaning that they rely on
mathematical manipulation of the broadening equations to
simplify the problem and calculate a line shape. Calculations
such as P. Kepple & H. R. Griem (1968) or C. R. Vidal et al.
(1973) are semianalytic. There are a wide variety of
approximations used in semianalytical codes. Simulation
methods arose by the 1980s that, using Monte Carlo methods,
simulated the plasma conditions around the radiating atom,
then performed an ensemble average of all the randomly
generated plasma conditions. Such code include SIMU
(E. Stambulchik & Y. Maron 2006) and XENOMORPH
(T. A. Gomez et al. 2016; P. B. Cho et al. 2022). The number
of approximations in simulation methods are far fewer than in
semianalytic calculations. We elaborate more on the techniques
used in line-shape calculations as well as their various
approximations in Section 3.

In his report on the first Spectral Line Shapes in Plasmas
Code Comparison Workshop (SLSP 2024), E. Stambulchik
(2013) pointed out that one of the most interesting results was
the large spread in the predicted widths (such as the full width
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Figure 2. Comparison of Lya and Ly$ widths calculated by different models.
There are nine sets of plasma parameters (electron number density, n,, and
temperature, 7, each spanning 2 orders of magnitude) with three variants of
plasma composition (electrons, ions, or electrons and ions together, labeled as
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e,” “i,” and “e+i,” respectively). Each x-axis point corresponds to a different
case. The y-axis is the ratio of the FWHM from a single calculation to the
average FWHM (denoted by (FWHM)) of all models submitted for that case.
Different symbols correspond to different models. This figure was adapted
from E. Stambulchik (2013).

at half-maximum, FWHM) for Lya; the Lyd line, which
involves a larger basis set, did not show the same scatter.
Figure 2 shows the scatter between Ly« and Lyé from the first
SLSP. Interestingly, but not surprisingly, the simulation codes
(not present for the comparison in Figure 2) give consistent line
widths among themselves. This agreement is largely due to the
simulation codes using the same physics and solving the same
equations with many of the same physical approximations. The
only differences between the simulation codes have been (up
until recently) in the numerical implementation of the
integration of the time-dependent Schrodinger equation and
the Fourier transform. The former was demonstrated to be
inconsequential in the third SLSP (J. Rosato 2017), and the
latter was found to only influence the numerical noise of the
simulations (J. Rosato et al. 2020). Consistency between
different simulation codes is a wonderful (and maybe a little
surprising) result, although it is no guarantee of accuracy or
that all the relevant physics has been captured.

The scatter seen in Figure 2 comes from a variety of sources,
including the disparate electron broadening and ion dynamics
treatments. Both of these effects are more important in Ly«
than they are in other transitions (like Ly3 or H{) because it is
a narrow line with an unshifted central component. For lines
with an unshifted central component, the width is dominated by
electron broadening and ion dynamics.

1.3. Experiments to Benchmark Lyo Line-shape Calculations

An important question is, “How do we know which line-
shape models are correct?” Line-shape codes should, ideally,
be verified through experiments. The Vidal-Cooper—Smith
(VCS) theory (C. R. Vidal et al. 1973; M. Lemke 1997) has
been benchmarked against the W. L. Wiese et al. (1972)
experiment—in the visible. Of course, just because one theory
performs well for the Balmer series is not a guarantee that its
accuracy extends to Lyman lines.

There are few experiments dedicated to measuring the
hydrogen Lyman lines; in general, measurements of UV
spectral lines pose difficulties for instruments. Lyman lines are
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inherently difficult to measure due to how saturated the lines
are (just like in a WD atmosphere). Saturated spectral lines
are required to observe features far down in the line wings.
For example, J. F. Kielkopf & N. F. Allard (1998) and
J. F. Kielkopf et al. (2004) conducted experiments to measure
the red wing of Ly« and Ly(3, respectively, and identified the
presence of the unbound molecular resonances. This discovery
makes it difficult to disentangle the population of the 1s ground
state and the broadening of the spectral line. As a result,
J. F. Kielkopf & N. F. Allard (1998) and J. F. Kielkopf et al.
(2004) could not make any definitive conclusion about the
quality of the line shape outside of confirming the existence of
these resonant features.

This situation requires some elaboration. In the line core, it is
easy to determine whether or not there is additional broadening,
i.e., the width of the line has changed. However, in the line
wings, that behavior is not present. Additional broadening in
the wings can be (mostly) replicated by simply multiplying the
opacity by a factor. Therefore, since both additional broadening
and the populations increase the opacity of line wings by a
multiplicative factor, it is incredibly difficult to isolate the
impact of each on the opacity.

Independent diagnostics (such as photon Doppler velocime-
try or optical Thomson scattering) are difficult to perform.
Without accurate diagnostics, only self-consistency can be
checked. In the case of the W. L. Wiese et al. (1972)
experiments, the assumption of partial LTE was made, then the
line-to-continuum ratio was used to obtain the temperature and
density.

The Lyman lines are saturated for most WD temperatures,
thus making the details of the line shape near the core of the
line unimportant. The wings, by contrast, become far more
important for dictating the opacity. The far line wings for hot
WDs (T 2, 10,000 K) are dominated by perturbations from
electrons and protons, which are in the so-called “quasi-static”
regime, where close collisions tend to be important. This
situation is contrasted to the line core, which is dominated by
long-range electron collisions and ion dynamics.

1.4. The Vidal-Cooper—Smith Theory

The “industry standard” line-shape calculations are based on
the VCS model. The VCS theory is based on the so-called
“unified theory,” which unites the one-electron limit in the
wings with the impact limit in the core, giving broad accuracy
over a wide wavelength range. Unified theory calculations, as
well as any other calculations that consider the time
dependence of the interaction, better reproduce the measured
wing behavior of spectral lines. The W. L. Wiese et al. (1972)
experiment demonstrated the improvement of VCS over the
P. Kepple & H. R. Griem (1968) profiles, which did not include
the time dependence of the problem. VCS calculations compare
well (as will be demonstrated in this work) with simulation
codes such as SIMU (E. Stambulchik & Y. Maron 2006) and
Xenomorph (T. A. Gomez et al. 2016; P. B. Cho et al. 2022),
which make fewer approximations than the VCS work.'
However, as pointed out by T. A. Gomez et al. (2022), these
calculations rely on the semiclassical approximation, which
treats the plasma particles as classical quasiparticles that obey

19 vCS does not include time-ordering, but simulations implicitly include
time-ordering. VCS also makes the binary-collision approximation, only taking
account of two-body interactions, whereas simulations automatically include
N-body interactions.
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Newtonian mechanics. It has since been pointed out by
T. A. Gomez et al. (2021) that the broadening of Lyc may
be enhanced when the plasma electrons are treated quantum-
mechanically.

The VCS calculation employs a further approximation that
limits its accuracy: the dipole approximation. In this approx-
imation, the dipole moment of the atomic transition interacts
with the fluctuating electric field of the plasma. This choice
results in accurate results near the line center in HI transitions,
but will break down in the line wings (T. A. Gomez et al.
2024), where only a full-Coulomb treatment will produce a
resonant structure from different states of the atom, e.g., H;,
and H™. In principle, there could be many resonances that arise
from H,, H;r, H72, H,, etc., but the probability of resonances
arising from three or more body interactions is much smaller
than from resonances arising from two-body interactions.

1.5. Resonant Structure in Line Shapes

When plasma particles come close to the radiating atom,
they can induce a change in the charge state or molecular state.
The plasma particles can collisionally ionize an atom, but the
reverse process, in which electrons can be captured, is also
possible (T. A. Gomez et al. 2020). Additionally, close-range
ion collisions can form molecular-like electronic structures,
such as H3 (e.g., N. F. Allard et al. 1999). These changes in
charge or molecular state often manifest as resonant structures
in the line wings.

These resonances are 10°-10° times weaker than the core
intensity. Yet, they are clearly visible in WD spectra due to the
lines being saturated, as demonstrated in Figure 1. Not only do
they appear in the UV, but the additional opacity creates a line
blanketing effect that redistributes flux to the visible, slightly
raising the overall intensity of the visible spectrum and
changing the emergent spectral line shapes. This redistribution
of flux also occurs if the electron broadening is modified
(T. A. Gomez et al. 2021). We point out that fitting model line
spectra is a common tool to determine log g and mass of WDs
(e.g., P. Bergeron et al. 1992), and modifying the flux
distribution will modify those fits.

To create the unbound molecular resonances (e.g., HJ
resonances due to proton collisions) within the usual line-shape
calculational  framework (e.g., E. Stambulchik &
Y. Maron 2006; T. A. Gomez et al. 2021), an ion full-
Coulomb interaction is required (T. A. Gomez et al. 2024),
although, in order for the calculation to predict the correct
location of the resonance, the two-center HJ problem must be
solved. The BALROG code does not have this capability, so we
rely on the unified theory (N. F. Allard et al. 1999) to account
for ion resonances in this work.

The analogous resonant structure for electron broadening
would be the formation of H™ resonances. Classical full-
Coulomb calculations, such as E. Stambulchik & C. A. Iglesias
(2022), cannot accurately reproduce the H™ structure. The
BALROG code (T. A. Gomez et al. 2021) is capable of
producing these H™ features. BALROG is distinct from other
dedicated line-shape calculations because it treats the plasma
electrons quantum-mechanically (allowing for the formation of
H™), uses full-Coulomb and exchange interactions, and solves
the T-matrices exactly. The exact solution of the T-matrices is
necessary for the calculation of H™ resonances; approximate
solutions will not produce any H™ features. This capability is
not remarkable, as there are collision codes that already do
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exactly this (e.g., I. Bray & A. T. Stelbovics 1992). In fact,
collision codes that do these calculations have been used to
calculate widths of isolated lines (H. R. Griem et al. 1997).
However, calculations that use collision cross sections to
calculate line widths are limited to the impact approximation.
BALROG is therefore notable in its ability to go beyond the
impact approximation and include the time dependence of the
electron—atom collision. In the original work of T. A. Gomez
et al. (2021), the BALROG Ly« line shapes were broader than
VCS across the entire profile, which led to flux redistribution in
the DA WD spectrum. One of the factors that contributed to the
broader line shape was the presence of H™ resonances in the
line wing that increased the opacity. The resulting flux was
larger in the visible range than was predicted using VCS
calculations by an amount that exceeded the estimated error in
the flux calibrations (G. Narayan et al. 2019; R. C. Bohlin et al.
2020).

The T. A. Gomez et al. (2021) results demonstrated the
importance of electron broadening of Lya for WD spectrosc-
opy in a way that had not been considered before. Therefore,
due to the sensitivity of the atmospheric structure and the
emergent flux to this broadening mechanism, it is imperative
that our calculations be as accurate as possible.

1.6. Necessary Improvements in Quantal Calculations

The BALROG calculations previously presented in
T. A. Gomez et al. (2021) were of limited accuracy since the
lower-state and correlation broadening was neglected—a
commonly used approximation for K-shell transitions that
was also used by VCS. In this paper, we examine the
importance of the ls broadening and its correlation with the
upper state, especially in the line wings. As we will
demonstrate here, the broadening of the ls ground state is
not as negligible as previously thought.

Currently, BALROG includes the usual upper-state, lower-
state, and correlation broadening terms. However, there are
additional terms to the broadening operator that capture the
transient stages of the collision that this paper will examine.
Since the lower-state and correlation terms will not be
negligible here, we must also consider these transient terms
in the calculation of the Lya profile wings. These transient
terms are completely left out of the impact theory but are, in
principle, included implicitly in VCS and simulation codes.
The part that is new here, therefore, is the time dependence of
quantum electrons rather than classical ones and, as discussed
above, the temporary formation of H™ states, both the excited
autoionizing states and the stable 1s* ground state.

The rest of the paper is organized as follows. Section 2
outlines some important principles about line broadening, in
particular the broadening of line wings, and discusses the
transient collision phenomena. This is followed by a review in
Section 3 of a number of approximations made in line-shape
calculations of K-shell transitions. In Section 3.2, we make the
same approximations as the standard VCS calculations to
establish equivalency between calculations. Section 4 explores
the validity of these approximations, focusing in particular on
the classical approximation, demonstrating that quantum
calculations result in larger cross sections for the ground state,
and H™ resonances appear and manifest as additional broad-
ening in the line wings. We also explore the necessity of having
a larger basis set when performing these calculations as they
increase broadening in the wings and cause interference
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between different transitions. Section 5 includes the transient
terms of the collisions within a quantum-mechanical frame-
work, then explores the impact that they have on the line-wing
opacity. In Section 6, we compare these new spectral line
shapes against VCS and the simulation code SIMU. Finally,
Section 7 shows the impact that these new profiles have on WD
spectra. We wrap up with our conclusions and future outlook.

2. Transient Stages of Electron Broadening

This work focuses on electron collisional broadening. As
discussed above, the molecular resonances that arise in ion
broadening have already been examined by N. F. Allard et al.
(1999). And while there are still improvements that can be
made in ion broadening, the analogous treatment of electron
collisions has yet to be examined.

The line shape is defined as the real part of the Fourier
transform of the dipole autocorrelation function (M. Baran-
ger 1958a; U. Fano 1963),

[(w) = ﬁfoc ¢ TH{D - D(1) p)d, )
m Jo
where w is the frequency of radiation, p is the density matrix
that describes the population of atomic and plasma states, and
D operates only on the atomic subspace. The dipole time
evolution is defined in the Heisenberg picture as

D(t) = ef'De~H, )

The time evolution operators, exp(—iHt), span the space of
both the atom and the plasma bath in which it is embedded.
When averaged over a large number of plasma perturbations,
the autocorrelation function decays to zero at long times. The
relaxation time is a characteristic time that is required for the
autocorrelation function to decay. The relaxation time is
inversely proportional to the width of the spectral line, Aw.

It has been well established that electron collisions with a
radiating atom are the driving mechanism behind electron
broadening (M. Baranger 1958a). In his seminal work,
M. Baranger (1958a) established that the Lorentzian width of
a line—in the impact approximation—is closely related to the
collision 7T-matrix (or the scattering S-matrix in an alternate
representation). Appendix A has a full discussion about the 7-
matrix and its properties. The T-matrix is proportional to the
collision amplitude,

(ak|T|a'k') o f (0, ¢), A3)

where a, a’ denote atomic states, k and k' are the momenta of
the projectile electron, and lastly 6 and ¢ denote the scattering
angles. Through the optical theorem (M. Baranger 1958a), the
collision amplitude can be written in terms of the total cross
section:

3O = Lo, @)
4

We point out that collisions have a certain timescale associated
with them. The collision timescale is not the same as the
relaxation timescale described above for the line shape. The
line width can be written in terms of the total collision cross
section (i.e., the sum over all collision channels). The width is,
however, not simply the addition of the contributions of upper
and lower states, but, rather, there is a cancellation of elastic
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terms. M. Baranger (1958a) therefore writes the width for an
isolated line as

1 inel ine
w= {Enev[a; Dt of D+fde(Q)—fl(Q)I2]} ,

Av

®)

where the first two terms in brackets are the total inelastic cross
sections of the upper (1) and lower (/) states, respectively, and
the last term is the elastic contribution, which has some notable
cancellation, as demonstrated in the isolated line case
(H. R. Griem et al. 1997). Due to the Lorentzian shape of
electron broadening, it is clear how one can interpret the
broadening as being a result of collisions shortening the
lifetime of the atomic states.

When one explores the microphysics of electron broadening,
it is clear that the mechanism for electron broadening is more
complicated than this simple description of the shortening of
the lifetime of the atomic state. Rather, each electron collision
constitutes an interruption of the time evolution of the state,
amounting to a sudden phase shift. Further, each collision
could knock the atomic electron into a different state, leading to
memory loss (S. Alexiou 2009). After performing an ensemble
average over all of these processes and different combinations
of collisions, the resulting average-time evolution is roughly a
decaying exponential that, when Fourier transformed, results in
a Lorentzian line shape.

The last term in Equation (5)—often referred to as the
“interference term” (M. Baranger 1958a; U. Fano 1963;
H. R. Griem et al. 1997), but we will refer to this as the
“correlation correction”—is extremely important and is neces-
sary for the calculation of accurate line shapes. U. Fano (1963)
explains the presence of this term more fully, stating that, when
an atom is radiating, the elastic collisions between the upper
and lower states do not “constitute a pair of distinguishable,
mutually exclusive events.” Further, if the upper and lower
states are perturbed in the same way, then the energy levels
would shift in tandem, resulting in no interruption of radiation,
and there would be no broadening. In other words, Fano states
that it “would cancel out completely the contribution of elastic
scattering to the line width if they happened to be equal
because in this event elastic scattering would not perturb the
molecular radiation process at all.” Another way to think of this
term is to correct for the fact that the upper- and lower-state
time evolutions are not independent of each other. We point out
that semianalytic codes have to explicitly include the correla-
tion correction; simulation codes generally include this effect
automatically.

It is important to note that M. Baranger (1958a) makes the
impact approximation, which makes the assumption of
completed collisions. E. W. Smith et al. (1969) states that the
completed assumption implies that “any collision which occurs
during the time of interest can be completed during that time.”
We point out that, often, the timescale of relevance is the
relaxation time of Equation (1), not the collision time. This
result allows the replacement of the time evolution operator
with the S-matrix since the S-matrix is defined in terms of the
infinite-time limit (B. A. Lippmann & J. Schwinger 1950). The
impact approximation, therefore, treats the entire frequency
range of the line shape as a generalized Lorentzian. We know
empirically from experiments, such as W. L. Wiese et al.
(1972), that this is not correct. The explanation for the
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deviation from Lorentzian line shape in the wings is attributed
to the time dependence of the broadening problem.

Fano’s derivation includes the time dependence of the
electron collisions, and thus, the broadening is dependent on
the frequency of the photon, being a generalized form of
Equation (5). This formalism has become the basis for the
E. W. Smith et al. (1969; and later C. R. Vidal et al. 1973, i.e.,
VCS) calculations that are so widely used in WD atmospheres.
Fano’s expression includes several additional terms not present
in Equation (5), which he describes as being entirely the result
of transient stages of the collisions. These terms are generally
neglected because their contribution vanishes entirely at the
line center. We will refer to these additional terms as

Mizansient (W), (6)

which is the focus of this work. M. Baranger (1958a) did not
consider these types of collisions, and, therefore, they were not
included within his formalism.

It is extremely common to Taylor-expand the electron-
broadening operator. However, when this is done, most of the
terms contained in M geni(w) are not included in the final
formulation. The work that was based on the relaxation theory,
such as the work carried out at the University of Florida (e.g.,
J. T. O’Brien & C. F. J. Hooper 1974; R. J. Tighe &
C. F. J. Hooper 1976; L. A. Woltz & C. F. J. Hooper 1984;
D. P. Kilcrease et al. 1993), as well as other more recent work
like T. A. Gomez et al. (2018), Taylor-expand Fano’s formula
to the second order in the atom—plasma interaction. As a result,
only all-order calculations would be able to capture this effect.
Until recently, the only all-order calculations were semiclassi-
cal, which assumes that plasma particles are -classical
quasiparticles. The VCS and simulation codes (e.g.,
M. A. Gigosos & V. Cardenoso 1987; E. Stambulchik &
Y. Maron 2006) are effectively all-order methods.

T. A. Gomez et al. (2021) extended the all-order capabilities
to a calculation that treats the plasma electron quantum-
mechanically. However, only the frequency-dependent version
of Baranger’s formula was used, and M.ngen(w) Was not
included. Since the focus of T. A. Gomez et al. (2021) was as a
diagnostic, such as that found in laboratory settings, it was
reasonable to omit M geni(w) because those terms do not
contribute to the line center.

As a last point of intuition, we point out that the line wings
are dominated by short-range collisions, which create strong
perturbations. Each interaction between a plasma particle and
the atom shifts the energy levels, and weak interactions simply
do not shift energy levels to the same degree that strong
interactions do. The decay of the autocorrelation function
(Equation (1)) is dictated by the accumulation of weak
collisions over the relaxation time. Since only small detunings
(Aw) sample long timescales, it follows that the weak collisions
impact the core of the line more than the wings. And lastly, as
the density increases, strong collisions become more common,
and the line width becomes larger.

As a side note, as the energy levels of the atom become
nondegenerate, the broadening will increasingly become
dependent on strong collisions, which are the most effective
mechanism for driving inelastic collisions. In fact, this scenario
becomes so typical that screening of the atom—plasma
interactions becomes less important for isolated lines than it
does for hydrogenic lines.
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As stated in the introduction, in order to calculate accurate
WD spectra, the wing opacity of Ly« in particular needs to be
accurate. Therefore, these transient terms that are usually
omitted need to be included within the broadening formalism.
One particular complication, as demonstrated by T. A. Gomez
et al. (2021), is the presence of additional broadening in the line
wings due to dielectronic capture, a phenomenon that is only a
feature of all-order quantum-mechanical calculations. For
neutral hydrogen, this effect means that H™ resonances impact
the wing behavior of Lya, creating an important opacity
source. It is therefore the intent of this work to include these
transient terms in the broadening and examine their importance
in determining the opacity of WD photospheres.

3. Common Approximations for K-shell Line Shapes

Here, we discuss the different approximations commonly
used in the calculation of hydrogen line shapes. Because the
focus of this work is on electron broadening, ion dynamics
(e.g., D. B. Boercker et al. 1987; M. A. Gigosos & V. Carde-
noso 1987; A. Calisti et al. 1990; E. Stambulchik &
Y. Maron 2006) will not be addressed.

There are a number of ways to calculate line shapes. The
principal ones are through semianalytic and simulation
methods. Other methods exist, such as the model-microfield
method (e.g., C. Stehle & S. Jacquemot 1993), but we will not
discuss them further. Semianalytic methods are usually based
on one of the following electron-broadening theories: the
impact theory (M. Baranger 1958a), relaxation theory
(U. Fano 1963), or the kinetic theory (T. Hussey et al. 1975),
each with their own approximations. Simulation methods
generate a time-dependent fluctuating plasma potential by
simulating classical quasiparticles, solve the time-dependent
Schrodinger equation, and then repeat the process to properly
sample the plasma statistics.

Of the approximations that will be discussed, we include the
dipole approximation, the no-quenching approximation, the
approximation that there is no lower-state broadening for K-
shells, the semiclassical approximation, the impact approx-
imation, and the single-perturber approximation. Some approx-
imations, such as screening and the factorized density matrix,
will not be discussed here because their use is ubiquitous and
established (as for screening) or will be the subject of future
exploration (factorized density matrix). Additionally, we also
briefly mention the second-order approximation, which relies
on a Born expansion for the collision problem whose accuracy
breaks down for neutrals unless an appropriate strong-collision
cutoff is employed in the calculations.

Dipole approximation. One of the most ubiquitous approx-
imations in the field of line broadening is the use of the dipole
interaction,

p
Vatom—plasma ~ *Da : Z qpﬁ
p P
~ *Da * Eplasmas (7)
to describe the interaction between the atom and the perturbing

plasma particles; this is what gives rise to the name “Stark
broadening.” A more physical description is to use the full-
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Coulomb interaction,

949y 9,Z
V;nomfplasma = r—rl - F
ap "a p p
k 8)
e 4 (
= E%Z[W - 5kﬁ—]
ap k rs Tp

X (2k + 1) Pr(cos vap),

where Z is the charge of the nucleus, r_/r- is the lesser/greater
of 7, and r,, k is the various multipoles of the potential (with
k = 1 being the dipole term), P;(x) is a Legendre polynomial,
and 7, is the angle between the atom and perturbing electron.
The advantage of using the dipole approximation is that dipole
moments are calculated by most atomic structure codes,
making the relevant line-broadening data relatively easy to
obtain. Contrast this with Equation (8), which requires more
effort to calculate. Other multipoles, including the monopole
and quadrupole terms, must also be calculated. To calculate the
case for which the perturbing plasma electron is closer to the
nucleus than the atomic electron, wave functions are needed;
E. Stambulchik & C. A. Iglesias (2022) used analytic
expressions to calculate this scenario for hydrogenic radiators.
It is fair to say that spectral line shapes in a pressure-broadened
environment are dominated by the Stark effect, and a treatment
based on a complete Coulomb interaction instead of the dipole
approximation will be a correction rather than a major change
to the predicted line shapes.
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We would like to emphasize that a full-Coulomb treatment is
necessary for the creation of H™ resonances in the 7-matrix
solutions. Additionally, as we will emphasize in the section on
quantum electrons, exchange interactions also need to be
included in the calculations.

No-quenching approximation. For a hydrogenic transition,
the “no-quenching” approximation means excluding Stark
mixing between states with different n values. For example,
for HQ (a transition fromn =2 ton =4),then =3, n =5, etc.
states would not be included in the calculation, nor would
matrix elements between n = 2 and n = 4 be included. The
resulting eigenvalue solutions for hydrogenic systems are linear
as a function of the electric-field magnitude.

This is a common approximation that helps to speed up
calculations. Calculations, such as those from P. Kepple &
H. R. Griem (1968), E. W. Smith et al. (1969), and
M. A. Gigosos & V. Cardenoso (1987), have employed this
approximation. It is common knowledge that, at higher
densities, the electric microfields in the plasma are much
stronger, and the quadratic Stark effect becomes notable. The
result is a well-known asymmetry in the spectral lines (e.g.,
S. Djurovi¢ et al. 2009). As with the dipole approximation, the
no-quenching approximation tends to dominate the line shape,
and any contributions from cross terms tend to be corrections
rather than major changes to the line shape.

No-lower-state broadening. In semianalytic line-broadening
calculations, the (frequency-dependent) electron-broadening
operator is given in terms of thermally averaged T-matrices (see
Appendix A for more information on our T7-matrix
calculations),

(ab|H(W)|a'b') ~ ne X3 fo dike= B x {(ak|T (Ey + Ex + w)|a'k) &y — Suar (PKITH(E, + Ey — w)|b'k)

+ i f dk'k"”? x [§(Ey + Ex — w — Ey — Ep) X (ak|T (E, + Eo)la’k’) (bk|T*(Ey + Eg)|b'k’)

+ 8w —Ey — Ev + Ep + Ep)

The dipole approximation is not physical near the origin of
the atom due to the divergence of the r, 2 behavior of the
electric field. Further, for ionized radiators, a plasma polariza-
tion shift is present only in calculations with a full-Coulomb
interaction (G. C. Junkel et al. 2000). The inclusion of this shift
has had several successes in reproducing plasma measure-
ments. For example, the full-Coulomb calculation of E. Stam-
bulchik & C. A. Iglesias (2022) was able to fully explain the
shifts of the Po line of He™ (F. Sobczuk et al. 2022; K. Dzie-
rzega et al. 2024), and the calculation of T. A. Gomez et al.
(2021) was able to determine the true density of a solid-density
Ti experiment (B. F. Kraus et al. 2021).

For neutral hydrogen, the difference between a dipole and
full-Coulomb treatment was small enough to be of no
consequence in the line core (T. A. Gomez et al. 2024), but
it did make a difference in the line wings. The most noticeable
difference was in the ion broadening, where the calculations
approximated the unbound molecular resonances at incorrect
wavelengths. Using a molecular basis set, as was done by
N. F. Allard et al. (1999), is necessary to accurately predict the
locations of these resonances.

X (ak|T(Eq + Ey)|a'k') (bkIT*(Ey + EQb'k')1}, )

where the set of @ and b denote the upper and lower states,
respectively, k denotes the perturbing electron states, E denotes
the energy, Ay is the thermal de Broglie wavelength, and
B = 1/kgT. We note that the expression in Equation (9) is only
approximate under the single-perturber approximation and is
valid near the line center. The right-hand side (RHS) of
Equation (9) contains terms from the upper-state, lower-state,
and two correlation correction terms. From this expression, it
can be plainly seen that the electron broadening is determined
by the collision 7-matrix (M. Baranger 1958a; U. Fano 1963).
In K-shell transitions, the broadening of the upper state is
generally much larger than the broadening of the ground state
or the correlation correction. Therefore, it is common to
approximate the line width of K-shell transitions as

(ablH(w)|a'b) = n, Ny f ke~
0
x (ak|T (Ep + Ex + w)la’k) by (10)

The dominant broadening, as mentioned when discussing the
no-quenching approximation, is from states of the same
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principal quantum number. For K-shell transitions, there are no
other states (of the same n) that the 1s electron can connect to.
Therefore, the broadening from the lower state, ls, is quite
insignificant compared to the broadening of any upper state—at
least in the line core. We will show in this work that, in the line
wings, the broadening of 1s and the correlation corrections are
not negligible. Further, under the no-quenching and dipole
approximations, the broadening of the ls ground state is zero.

Semiclassical approximation. A common practice, dating
back to some of the first practical line-shape calculations
(H. R. Griem et al. 1959), is to assume that plasma particles
obey the classical Newtonian dynamics rather than quantum
mechanics. This is a rather standard approximation, and many
calculations have shown a correspondence between the two
methods (S. Alexiou & R. W. Lee 2006)—at least in the line
cores.

This correspondence is remarkable, considering that classical
calculations do not include the energy exchange between the
colliding plasma electrons and the radiating atom. There is one
physical effect that is worth mentioning here, which is that a
quantum calculation will include dielectronic capture. Dielec-
tronic capture was first included by T. A. Gomez et al. (2020)
and included in a more exact formalism in T. A. Gomez et al.
(2021). The result was the presence of H™ resonances in
hydrogen T-matrix calculations. To be clear, these resonances
are present in the collision cross sections used to calculate the
electron-broadening operator and are not H™ transitions
sometimes seen in cool WD spectra (N. F. Allard et al.
2004). These H™ resonances will become an important aspect
of Ly« line-shape calculations.

There are a couple of other important factors involved with a
quantum-mechanical calculation, the first being that a true
quantum calculation will also take into account the indis-
tinguishability of fermions. This concept requires the wave
function of the atom plus a single perturber to have the property

U(ra, 1) = (=D V(ry, 1), 1)

where W is the total wave function, 7, and r, are the coordinates
of the atom and perturbing electrons, respectively, and S is the
total spin of the two-particle system. This antisymmetry with
respect to the exchange of coordinates results in the exchange
interaction (H. A. Bethe & E. E. Salpeter 1957).

The second important factor is a result of detailed balance. In
quantum-mechanical calculations, there are exponential damp-
ing factors that appear, i.e.,

w(—lAwl) = e P2y (AW, (12)

where w is a shorthand for the frequency-dependent width. This
behavior is a result of detailed balance, which causes the far
wing of one side of the profile or the other to decay faster than
the other.

Impact approximation. The first line-shape formulations
employed the impact theory (M. Baranger 1958a, 1958b,
1958c; A. C. Kolb & H. Griem 1958). The impact theory
makes a number of approximations, including taking the long-
time limit (giving line shapes their Lorentzian shape) and
assuming that the collision time is less than the time between
collisions (disentangling collisions). The latter assumption
means that collisions are dominated by one perturbing electron
at a time. As a consequence, the transient stages of collisions
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with plasma particles are ignored, and only completed
collisions are considered, i.e., partial collisions are neglected.

It has been well established experimentally (W. L. Wiese
et al. 1972) that, because the impact approximation neglects the
time dependence of the collisions, the wings are inaccurate. For
example, the results of P. Kepple & H. R. Griem (1968)
compared well to line core measurements, but tended to
overestimate the wings of the Balmer lines. Of the calculations
compared, only VCS, which takes into account the time
dependence of the problem, could accurately capture the wing
behavior of the Balmer lines. This success helped to establish
VCS as the industry standard for hydrogen line shapes in
astrophysics research.

Single-perturber approximation. In nearly all semianalytic
treatments of electron broadening, the broadening is reduced to
solving the two-body problem in detail and then multiplying
the entire function by the electron density (M. Baranger
1958a, 1958b, 1958c; P. Kepple & H. R. Griem 1968;
E. W. Smith et al. 1969; C. R. Vidal et al. 1973; T. A. Gomez
et al. 2021). This approximation is one of the foundational
approximations in the impact theory. While not formally
required in the relaxation (U. Fano 1963) or kinetic (T. Hussey
et al. 1975) theories, any practical implementation of interac-
tions involving more than just the atom plus one plasma
electron is too computationally expensive for semianalytic
methods.

This is one area where simulation methods (M. A. Gigosos
& V. Cardenoso 1987; E. Stambulchik & Y. Maron 2006;
P. B. Cho et al. 2022) excel. Multibody effects can be captured
with little additional computational cost.

3.1. Additional Approximations

As mentioned above, there are a few other approximations
that are worth discussing, but will not be examined in this
work. These include screening, the second-order approx-
imation, and the factorized density matrix approximation.

Screening. When the N-body behavior of the plasma is not
included, screening potentials are used to account for the
correlations between plasma particles. It is well established
that, in the presence of a test charge, plasma particles will
rearrange themselves, and their motion and positions become
correlated. A fully interacting plasma solution takes these
plasma correlations into account, as found by E. Stambulchik
et al. (2007). However, many calculations involve simplifying
assumptions, such as the single-particle/binary-collision
approximation. Sometimes simulation codes use “trivial”
molecular dynamics, where particles travel on straight paths
around neutrals and hyperbolic trajectories (when a Coulomb
field is assumed, but more general curves if the Debye
screening is accounted for) around charged radiators. These
simplifying procedures can account for the missing correlations
by screening the atom—plasma interaction.

The justification for using screened potentials was developed
formally by H. Capes & D. Voslamber (1972) and T. Hussey
et al. (1975) using the BBGKY hierarchy. Within the kinetic-
theory formalism, there were both static and dynamic screening
contributions. To our knowledge, only T. W. Hussey et al.
(1977) and D. B. Boercker & C. A. Iglesias (1984) evaluated
the dynamic screening contribution, but they were evaluated
under the second-order approximation. All other calculations
have only used the static screening.
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Here, our use of static screening is valid because we are only
focused on the far line-wing behavior, which is in the static
limit. The full screening (i.e., the inclusion of dynamic and
static screening) results differ in changes in the line shape only
for detunings less than the plasma frequency (T. W. Hussey
et al. 1977),

47n,e?
Wp = T, (13)

which is only about 0.01 eV in our calculations and can be ignored
for the far wing. Further, in this approximation, consideration
of the interaction with plasma oscillations (D. Bohm &
E. P. Gross 1949a; D. Bohm & E. P. Gross 1949b) is assumed
to be negligible (H. R. Griem 1974).

Second-order approximation. We want to make a note about
the second-order approximation. This is a common approx-
imation within analytic line-shape treatments that Taylor-
expands the formula for the electron-broadening operator in
powers of the interaction potential; simulations never make this
approximation. This situation is akin to making the Born
approximation in collision problems. The accuracy of the
second-order approximation can be maintained with strong-
collision cutoffs. Such cutoffs are absolutely necessary to
compare well with measured spectra of neutral elements like
HI (C. A. Iglesias 2016). Calculations such as P. Kepple &
H. R. Griem (1968) or J. T. O’Brien & C. F. J. Hooper (1974)
use the second-order approximation, but only the former study
uses strong-collision cutoffs.

We speculate that one of the reasons for the scatter
previously discussed in Figure 2 is the various strong-collision
cutoffs used by different codes. This is a plausible explanation
as some codes are tailored to certain conditions, and, therefore,
their accuracy is not applicable to all conditions. For example,
the cutoff procedures between P. Kepple & H. R. Griem (1968)
and H. R. Griem et al. (1979) are different, with the latter
applying to ions, and the former applying to neutral H. As an
example of how important these strong-collision cutoffs are,
T. Nagayama et al. (2016) compared line-shape models from
several codes and found, even for the He~ line of Mg'®", the
inferred density between two popular line-shape codes with
different strong-collision prescriptions differing by about 50%.

One of the achievements of the VCS work (E. W. Smith et al.
1969) was that it is an “all-order” calculation, meaning that it does
not employ the second-order approximation and does not require a
strong-collision cutoff. For a long time, all-order treatments of
electron broadening were relegated to semiclassical calculations
that used the dipole approximation. Recently, T. A. Gomez et al.
(2021) created the first all-order, quantum-mechanical, full-
Coulomb electron-broadening calculation.

We will not explore the second-order approximation further
within this work. All of the calculations that we will be
comparing here are “all-order” or exact.

Factorized density matrix. To calculate the thermal averages
necessary to produce line widths, a density matrix must be used
to sample the appropriate variables of the perturbing electrons.
The density matrix, defined in LTE to be

p— e /Tre0H, (14)

should, in principle, include all terms of the Hamiltonian.
However, one of the most common approximations is to ignore
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Figure 3. Comparison of SIMU, BALROG, and VCS results with the no-
quenching approximation at T, = 1 eV and n, = 10'7¢ cm . The red wing of
Balrog decreases faster than the others due to the detailed balance property seen
in quantum calculations (Equation (12)). Otherwise, the agreement between the
three calculations is superb.

the interaction between systems. This choice allows the density
matrix to be factorized into atomic and plasma components, i.e.,

PR PPy (15)

Some effort has gone into exploring the consequences of
including the atom—plasma correlations in the density matrix
(T. Hussey et al. 1975; T. A. Gomez et al. 2018; C. A. Iglesias
& T. A. Gomez 2024). The correlations result in an asymmetry
of the profile beyond about

|[Aw| 2 T.

This behavior will, therefore, be consequential to the calcul-
ation of the Ly« opacity, but is beyond the scope of this work.

3.2. Comparison of Simulation and Quantum Codes with VCS
When Making the Same Approximations

The unified theory of VCS is a unification of the impact limit
in the line center (dynamic limit) with the static limit in the
wings. E. W. Smith et al. (1969) state that “the only essential
difference between the impact theory and the unified theory
is due to the fact that the unified theory does not make
the completed collision assumption.” This statement indicates
that the VCS theory still employs the single-perturber
approximation.

The VCS profiles that are tabulated (C. R. Vidal et al. 1973;
M. Lemke 1997) make a number of other approximations.
These include the dipole approximation, the classical approx-
imation, the no-quenching approximation, the no-lower-state
broadening approximation for K-shell transitions, and the
factorized density matrix approximation. Another approx-
imation made by VCS is the neglect of so-called “time-
ordering” (L. J. Roszman 1975). Time-ordering adds additional
broadening, especially in the core.

To test the correspondence between VCS and the more
physically complete BALROG and SIMU models, we can make
the same approximations as VCS within BALROG (as far as is
possible) and SIMU, and compare these results to VCS. For
example, if the no-quenching approximation is made, the wing
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behavior of BALROG, SIMU, and VCS is nearly identical, as is
seen in Figure 3. We note that, for this comparison, exchange
interactions were not included in the BALROG calculation.
Given the results presented in Figure 3, this would seem to
confirm that, under the no-lower-state broadening approx-
imation and the no-quenching approximation, the three
different calculations give nearly identical electron-broadened
shapes for the wings of Lya. The only real deviation is that
BALROG includes detailed balance, which causes the depres-
sion of the red wing.

We first compared the cores of the lines between the different
calculations (not shown here). It is obvious that there are
differences between VCS and BALROG (T. A. Gomez et al. 2021)
in the core. This behavior was initially attributed to the difference
between classical and quantum-mechanical calculations, espe-
cially considering that the difference vanished at higher
temperatures, where the thermal de Broglie wavelength becomes
smaller, and the plasma electrons become more classical.
However, calculations from SIMU also show additional broad-
ening in the core over VCS. We now attribute this difference to
the lack of time-ordering included in VCS (L. J. Roszman 1975).

It is important to point out the different physics involved in the
classical calculations (VCS, SIMU) and quantum calculations
(BALROG). In a classical picture, the wing behavior is a result of
the electrons approaching the static limit. This is not the case with
the quantum calculation; rather, in the wing, energy is being
transferred to (blue wing) or away from (red wing) the colliding
electron. If we examine Equation (10), we can write the imaginary
part of the electron-broadening operator as

J{aklT (E, + E; + Aw)lak)
- f k'S akIT (Ey + Ex 4+ Aw)la'k!") P

X 6(Ea, + Ek + Aw — EQ” — Ek”). (16)

The delta function ensures that the electron leaving the
collision has the energy

Ey = Ep + Aw (17

in the no-quenching approximation. It is clear from this
expression that the outgoing electron will gain/lose energy in
the blue/red wing of the profile. Therefore, the relationship
between the red and blue parts is a Boltzmann factor, as already
discussed and shown by Equation (12). This change of energy
of the colliding electron will become important when the no-
quenching approximation is removed. Given the vastly
different physics involved, it is impressive that classical and
quantum line-shape calculations agree as well as they do.

4. Exploration of Approximations and Calculational
Considerations

In the next sections, we explore the various aspects of the
above-mentioned approximations on the H Ly« line. As already
stated above, there are some obvious approximations that do not
warrant further discussion. In the following, we remove some of
these approximations to examine their importance. We begin with
removing the no-quenching approximation. Lifting this approx-
imation is known to cause asymmetries (S. Djurovi¢ et al. 2009),
so it is worth exploring. Next, we examine the quantum-
mechanical nature of collisions with the 1s state of H. As we will
show, when exchange interactions are included, lower-state
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Figure 4. Comparison of SIMU calculations with and without Ly( dipole
matrix elements included; plasma conditions are the same as in Figure 3.
Interaction matrix elements between n = 2 and n = 3 cause a bump in the Ly«
blue wing at the location of Lyg. This indicates that, at that photon energy, the
mixing of n = 2 and n = 3 is stronger; these features were present in the
XENOMORPH calculations of P. B. Cho et al. (2022). However, interference
between Ly3 and Lya causes the Ly« red wing to decrease slightly.

broadening and correlation terms become important in the wings.
Historically, only a few correlation terms are included within
semianalytic calculations. We therefore examine the importance
of the additional terms that are usually included; U. Fano (1963)
describes these terms as arising from the transient stages of
collisions.

4.1. Interference between Different Transitions

One interesting aspect of the calculations is the interference
between n = 2 and n = 3 transitions. Both SIMU (E. Stambu-
Ichik & Y. Maron 2006) and BALROG (T. A. Gomez et al.
2021) calculations produce this interference, which causes the
red wing to be reduced slightly; Figure 4 demonstrates this
effect using SIMU. From a theoretical perspective, this concept
can be most effectively demonstrated using the formalism of
BALROG. The line-shape calculation using the analytic theory
requires the calculation of the broadening operator acting on
the dipole matrix,

I(w) = TrDR(w)pD, (18)

where

1

By P Ty

19)

In the most general case, R(w) has elements that connect n = 2
to n = 3. Therefore, when performing this calculation, the cross
terms in R(w) will contribute to each individual line shape.
The resulting effect is a slight lowering of the red wing of
Lya line and a raising of the opacity between the lines. If we
delete the n = 3 — 1 matrix elements in D on the left-hand side
of R(w) in Equation (18), then the resulting line shapes display
a resonance that is positive on the red side and negative on the
blue side of Ly3. When the Ly line is included, this slightly
negative contribution creates an asymmetry in Ly3. We note
that this singularity is merely the result of trying to define a
Lya line when states of different n are mixed together. When
all matrix elements of D are included in the calculation, no such
singularity exists. For calculations in the remainder of the



THE ASTROPHYSICAL JOURNAL, 986:52 (24pp), 2025 June 10

2000 . T
1s with Exch

1s no Exch
2p with Exch

2p no Exch «eseeeeee

1500 F
=
—
= ;
= ;
= 1000 p[:
E .
g

500 F N

0 4 L PP o
0 0.05 0.1 0.15 0.2 0.25
Ey. (at. un.)

Figure 5. Comparison of fully on-shell 7-matrix calculations for 2p (red) and
1s (green) with (solid lines) and without (dashed lines) exchange. Only partial
waves up to £ = 4 are included in these calculations due to these waves
containing the close collisions. Exchange is responsible for significant
increases in the 1s elastic 7-matrix.

paper, the matrix elements are omitted only for D on the left-
hand side of R(w), which creates the behavior that results in a
negative opacity at LyS. The full dipole matrix on the RHS of
R(w) is retained from here on.

4.2. The Quantum-mechanical Broadening due to the Is State:
Nonnegligible Lower-state and Correlation Broadening

The no-lower-state broadening approximations and classical
approximations are tied together. Exchange interactions are
particularly important to accurately describe the elastic
collisions of the 1s ground state. Figure 5 demonstrates how
the T-matrix solutions are altered when exchange interactions
are included compared to when they are omitted. Both
calculations predict the presence of H™ resonances, but only
the proper inclusion of exchange puts the resonances much
closer to the correct energies. Without exchange, the n = 2
doubly excited autoionizing state structure looks nothing like
detailed calculations or experiments. Here, the widths are far
larger than with exchange. Even with exchange, our calcula-
tions do not exactly match with other more detailed calcula-
tions, such as calculations that use the variational method
(A. K. Bhatia et al. 1967; A. K. Bhatia & A. Temkin 1969). We
note that, while the bound state and autoionizing state energy
levels of H™ calculated using the scattering method have
slightly less binding energy than the variational method, the
energy level structure closely resembles that of variational
method calculations. In Table 1, we compare the locations of
various H™ features with quantities from other calculations.

The contribution from the lower-state broadening does not
contribute much to the core and is almost entirely canceled out
by the correlation term (last term of Equation (5) or third and
fourth terms of Equation (9)). In the line wings, the
contribution from ls increases significantly. Further, even the
correlation term of Equation (9) does not decrease broadening
at all frequencies, but increases broadening away from the line
center. One interesting and maybe somewhat counterintuitive
result is that the correlation term creates more broadening in the
line wing rather than less broadening. This effect is attributed to
the change in the sign of the real part of the collision
amplitudes between the upper and lower states at frequencies
away from the line center. Physically, this means that the
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Figure 6. Plotted is the normalized intensity (Equation (1)) as a function of
wavelength, a comparison of BALROG calculations with upper-state-only
broadening (Equation (10); dotted red), upper- and lower-state broadening (first
two terms of Equation (9), dotted—dashed turquoise), and all three terms of
Equation (9) shown in black; the T-matrices used to produce these calculations
include exchange. The ground state contributes significantly to the broadening
in the Lya red wing, and at detunings less than —1 eV, the correlation
correction terms contribute extra broadening. There is a singularity at the
location of LyB3, where the profile increases sharply, then, between
1.888 eV < Aw < 2.8 eV, the profile goes negative, which arises due to the
interference between n = 2 and n = 3 that was discussed in Section 4.1.

shifting of the energy levels due to the perturbation is larger
than if the energy levels were shifted independently of each
other. We demonstrate the impact of the lower-state and
correlation terms on the line wings in Figure 6.

4.3. Summary of VCS Approximations

The approximations used by VCS are valid only in the line
core. We find that, in the line wings, three out of the four
primary approximations, dipole (T. A. Gomez et al. 2024), no-
quenching, and classical (the latter two are explored in
Section 4.2), by VCS listed above are not valid. Further, these
approximations are interconnected. The no-quenching approx-
imation for the upper state is not valid in the wings, where we
have demonstrated some interference between the different
energy levels. However, if the classical and dipole approxima-
tions are removed, the no-quenching approximation for the
lower state is no longer valid. In this section, neither the
BALROG nor the SIMU calculations employed the dipole
approximation, and it will not be used again going forward.

Therefore, we see that, in a quantum treatment of the
electron broadening, the lower-state and correlation broadening
cannot be ignored. By extension, the additional broadening
terms that describe transient stages of the collision,
M ansient(w), need to be explored in order to have confidence
in the calculated wing opacity.

5. Transient Stages of Collisions and the Formation of H™
Features

We reiterate that Equation (9) is not a complete description
of the broadening over the entire frequency range. One way in
which this is evident is in using a distorted-wave treatment
(D. H. Sampson et al. 2009). Rederiving the U. Fano (1963)
results with a distorted-wave approach shows that different
distortion potentials should result in the same line shape.
However, if only the terms in Equation (9) are included, the line
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Table 1
Energies of H™ States Calculated Using Scattering Formalism Compared against Literature Values
State E (This Work) E (Ref)
1s*'s -0.524 —0.527 H. A. Bethe & E. E. Salpeter (1957)
25 2p 3P —0.142 —0.14259 A. K. Bhatia & A. Temkin (1969)
—0.142407 A. K. Bhatia et al. (1967)
2p% 3p¢ —0.12525 —0.125355 M. Bylicki & E. Bednarz (2003)

Note. The scattering method is not expected to be as accurate as variational methods used throughout the literature. All energies are in Hartree atomic units.
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Figure 7. Thermally averaged 7T-matrix calculation for the 2p state at line
center (on-shell; black) and at a position off-the-energy shell that corresponds
to Aw = —0.82 eV (blue). At the line center, clear doubly excited n = 3 and
n = 4 resonances appear. However, only away from the line center are the
(rather large) n = 2 resonances present.

shape diverges in the far wings for different distorting potentials,
indicating that the formulation is not complete. This result, in
addition to the algebraic properties of the formula, indicates that
the transient terms of the collisions are needed to have a complete
description of the broadening. Indeed, in tests that we have
performed with the transient parts of the collision included, the
resulting profile is independent of the choice of distortion potential
(within some small numerical tolerance). Since the broadening of
the 1s ground state significantly contributes to the Ly« broadening
in the line wings (see Figure 6), the inclusion of the transient terms
should be explored.

One of the most significant features that arises in these
calculations is the presence of H features. In the on-shell
calculations (corresponding to the line center), there are clear
resonances below the n = 3 and n = 4 thresholds, but the n = 2
resonances, which are below the threshold, are not present.
However, the off-shell T-matrix solutions (corresponding to

energies away from the line center) contain the n = 2
resonances, which are some of the strongest in the spectrum
and are now counted as part of the integration when calculating
the width; the T-matrices are shown in Figure 7.

There are two types of H™ resonances that appear in the
calculation that deserve consideration: stable and autoionizing
states. The ground state of H™, 1s* 'S, is well known
(S. Chandrasekhar 1944) as the only stable state of H™ and has
been determined to be an important opacity source in the Sun
(I. Hubeny & D. Mihalas 2014). However, there is a second
bound state of H™, as discussed by G. W. Drake (1970) and
M. Bylicki & E. Bednarz (2003); this is the doubly excited
2p* 3P¢ state, which is stable in nonrelativistic calculations
with an energy of ~—0.125355 hartrees. These bound states
are captured in the real part of our 7-matrix calculations
because they are below continuum thresholds. The bound states
have no width to them, meaning they will have no corresp-
onding feature in the imaginary part of the 7T-matrix and are
singular. The autoionizing states are energetically above the
continuum and manifest as resonances with a finite width
(A. R. P. Rau 1996). As a result, the autoionizing states will
appear in both the real and imaginary parts of the calculation.
As we demonstrate throughout the rest of this section, both of
these types of H™ states are observed in the spectrum of Lya.

The upper-state and lower-state contributions to H(w) will
only show autoionizing resonances in the imaginary part (the
width), meaning that stable bound states will only contribute to
the real part and not to the imaginary part of the upper- and
lower-state broadening terms. Because the upper-state broad-
ening terms contain H™ features (e.g., 2p, nl configurations), it
would therefore make sense that the transient terms would also
include H™ features, and indeed, they are distinct in the
resulting broadening operator. Further, the transient terms
result in stable states of H™ contributing to the imaginary part
of H(w) and not just the autoionizing ones. Unlike the transient
molecular resonances (N. F. Allard et al. 1999), these
resonances from H™ result in broad features.

The transient terms can be derived by convolving the
frequency evolution of the upper state and lower state.
Mpansiend(w) 1s explicitly defined as (U. Fano 1963)

Mizansient (W) = E E _E,

+
P E —w—Ef
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Figure 8. Left: comparison of the different contributions to the broadening operator. The usual terms in Equation (9) are given in solid black, short-dash gray, and
dotted light gray. The transient terms from Equation (20) are given in dotted—dashed—dot green (terms 1 and 2), long-dashed—dotted blue (terms 3 and 4), and dashed
dark red green (term 5). The calculations presented here only include up to £ = 4, where all of the broadening of ls occurs. The basis set here includes only up to
n = 3. Right: a demonstration of the impact of including various transient terms in the final profile. The solid black line includes no transient terms, the dashed dark red
includes terms 1 and 2, the long-dashed—dotted blue line includes terms 1 through 4, and the dotted—dashed—dotted green line includes all transient terms.

where the energy parameters, labeled E, include both radiator
and perturber energies, and the subscripts r and [ on the
energies indicate the state from the right (bra) and left (kets),
respectively, of the T-matrices. Here, v is an energy, but in this
context is treated as a free parameter, rather than (in the usual
scattering context) being associated with the energy of the
initial or final state of the scattering event. Energies with the *
superscript indicate a lower state as well as a complex
conjugate. These contributions arise solely from the transient
stages of collisions between the radiating atom and the
perturbing electrons; a full discussion is given in
Appendix B.

The contribution of the individual terms of Equation (20) to
the imaginary part of the broadening operator is demonstrated
in Figure 8. The usual contributions (Equation (9)) are shown
in different shades of gray, while the transient terms
(Equation (20)) are in various colors, with the first two terms
in dashed dark red, terms 3 and 4 in dotted—dashed blue, and
the final term in dotted—dashed—dotted green.

One expected outcome is that all of the transient terms are
zero at Aw = 0. As already stated in U. Fano (1963), the line
center is the long-time limit and corresponds to completed
collisions. Therefore, since the remainder of the terms
corresponds to the transient effects, we would expect them to
vanish in the limit of long times, which is the line center.
Further, if the T-matrices, 7(¢)), were independent of ), then
Miansien(w) = 0.

Terms 1 and 2 of Equation (20) are asymmetric about the
line center, adding broadening on the red side of the profile and
reducing the broadening on the blue side of the profile. Terms 3
and 4 of Equation (20) are symmetric around the line center,
reducing the broadening on both sides of the profile. The final
term of Equation (20) adds a bit of broadening back in,
canceling some, but not all, of terms 3 and 4, and has a slight
asymmetry that counters terms 1 and 2.

Figure 8 demonstrates various H™ features in the broadening
operator and the associated changes in the line shape. It is clear
that, without the transient terms, the 2s2p >P autoionizing
resonance is present in the line wing about 0.5 eV from the line
center on the red side of the profile. When the transient terms
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are included, the stable 1s* 'S state appears on the blue side of
the wing.

6. Comparison of Calculations

We would like to spend some time identifying the cause for
different broadening effects. Already in Figure 3, we showed
that BALROG, VCS, and SIMU give the same line shape (except
for BALROG due to detailed balance affecting the red wing of
the profile) when each calculation makes the same approxima-
tions. As a reminder, these approximations include no-
quenching and dipole approximation.

We repeat the comparison of BALROG against VCS in
Figure 9, where BALROG now uses a full-Coulomb interaction,
includes exchange, no longer makes the no-quenching approx-
imation, and includes the transient terms. The removal of the
no-quenching approximation is needed in order to capture the
H™ autoionizing states, which adds to the structure of the
wings. BALROG now shows a slight enhancement in the blue
wing of the profile compared to VCS. Further, the structure of
the 1s* 'S ground state is present, as indicated above. The red
wing has now been increased and agrees well with VCS except
in the location where the H™ resonance is at ~0.55 eV.

Next, we want to discuss the impact of increasing the basis
set size on the profiles. The differences between BALROG and
VCS when the former uses the n = 2 basis result in fairly
similar profiles. However, when n = 3 is included, the opacity
in the wings is raised above that of VCS. This behavior is
expected as increased basis sets tend to increase the broad-
ening. SIMU calculations confirm that including n = 3 raises
the opacity. The SIMU and BALROG calculations are fairly
close in the red wings except around the H™ autoionizing
feature, of course.

Lastly, when including n = 4 into the calculation, the opacity
in the wings increases even further over the n = 3 calculations.
The increase in the opacity going from n = 3 to n = 4 is less
than that from n = 2 to n = 3, so there is some confidence that
we are approaching convergence for the calculation. We
acknowledge that, while we are approaching convergence,
these calculations are not converged, and there will be some
uncertainty from neglecting states higher than n = 4, including
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Figure 9. Comparison of the new BALROG calculations (various shades of blue) against VCS (dark orange) and SIMU (dark green). The SIMU calculations presented
here include up to n = 3 and use a full-Coulomb interaction. BALROG calculations were performed with a variety of different basis sets; this is done to isolate the effect
of including a larger basis set. For instance, when only n = 1 and 2 were included, the red wing followed VCS quite closely except for the presence of the autoionizing
feature at ~0.55 eV. Increasing the number of states in the calculation increases the opacity; this is seen not only in the various BALROG calculations but also in SIMU.
The BALROG calculations that include n = 4 have 90% and 180% increased opacity over VCS at Aw = —0.55 and —2 eV, respectively. We point out that even the
BALROG calculations are not converged here, and the inclusion of a larger basis is prohibitively expensive to calculate.

continuum states. Including even n = 5 is computationally
prohibitively expensive due to the additional amount of data
that is needed to calculate the line shape. One of the major
memory sinks in the calculation is storing the fully off-shell 7-
matrices before performing the integration over the projectile
electron’s energy.

It is clear that the new quantum-mechanical calculations are
the broadest of all of the presented calculations here. The
increase in the red-wing opacity is not a small correction but
rather is a quite significant change compared to VCS. Much of
this behavior is due to the broad H™ features that now appear in
the calculation, as well as the larger basis set in which the
calculations are performed. The opacity of the Ly« red wing at
Aw = —0.5 eV and Aw = —2 eV has increased by 90% and
180%, respectively, over VCS when the n = 4 states are
included in the calculation. It is also clear from this comparison
that the new calculation has a flatter slope compared to VCS,
meaning that the decay of the profile is not as fast as previously
predicted, and the opacity discrepancy will get worse as the
detuning becomes large. The SIMU calculation presented here is
instructive because it also shows a different slope than what is
predicted by VCS despite also being a classical calculation.

7. White Dwarf Atmospheres

In the analysis performed above, it is clear that there are
some effects from treating the broadening quantum-mechani-
cally. Of the calculations we compare here, only BALROG
(T. A. Gomez et al. 2021) contains the quantum behavior of the
plasma electrons. Therefore, in our comparison of WD spectra,
we compare only BALROG and VCS/Tremblay—Bergeron
calculations. We note that the P. E. Tremblay & P. Bergeron
(2009) Ly« calculations are identical with VCS. To generate
model atmospheres and synthetic spectra, we use the program
TLUSTY (I. Hubeny & T. Lanz 1995; 1. Hubeny et al. 2021),
appropriately modified to incorporate new line-broadening
data. We note that, in a few of our comparisons, the T of the
WD models is below 15,000 K. At these temperatures, the
atmosphere model must include a treatment of convection
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(P. Bergeron et al. 1995), whether it is through mixing length
theory or 3D hydrodynamical calculations (P. E. Tremblay
et al. 2011).

As mentioned above, modeling Hj features in WD spectra
are necessary. The N. F. Allard et al. (1999) models that are
used for this purpose are ion-only profiles. We stress that the
original Allard/Koester calculations have been improved
(D. Koester 2024, private communication), and the corresp-
onding line-broadening tables are now implemented in
TLUSTY. These tables separately describe broadening by
hydrogen atoms and protons, while broadening by electrons is
described by a semiclassical formula. Therefore, in the
atmosphere models, one would have to convolve (if one
cannot solve both of them together) an electron-only profile
with an ion-only profile. Because VCS calculations of electron-
only broadening are not available, atmosphere codes use one-
half of the intensity of the VCS ion+electron profile
calculations to approximate the electron profile. Instead of
performing a true convolution, it is approximated in the
atmosphere models by adding one-half of the VCS profile to
the Allard H to make the final profile. This procedure has the
issue of doubling the strength of Ly« in the core of the profile.
At lower temperatures, this doubling is not an issue, but at
hotter temperatures, where the Ly line is not as saturated, this
might pose a problem for obtaining accurate opacities. The
profiles that we provide here are electron-only profiles and can
be used in place of the one-half VCS profile. When using
recent calculations by Koester, we replace his semiclassical
treatment of electron broadening with our present calculations,
while keeping the calculated tables of broadening by HJ and
H,. This grid of new profiles will be made available on the
TLUSTY website."'

One of the immediate results of this work is that, for low-
temperature WDs, the increased opacity from the 2s2p *P?
resonance is observable in the emergent spectra. Figure 10
demonstrates quite clearly a change in the slope of the Ly« red

1 https: //www.as.arizona.edu/~hubeny /tlusty208-package /
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Figure 10. Comparison of BALROG and Koester profiles in an atmosphere,
calculated with TLUSTY. The atmosphere calculations of TLUSTY with
BALROG profiles predict that the H™ resonances will be present and even
measurable in cool WDs in the UV; log g is assumed to be 8 for all spectra.
Likewise, there is a change on the blue side of the profile corresponding to the
increase in opacity from the ground state of H™.

wing that begins exactly where the resonance occurs. Redward
of the H™ resonance at 1278 A, there is less flux in the new
model. Additionally, there is another change in the slope of
Lya where the ground state of H™ occurs, which is indicated
by a lower flux blueward of 1135 A. Unfortunately, these
features are not observable with HST’s COS as the 1278 A
resonance is in the gap between the two chips on the
spectrometer, and the H™ ground state feature is at the blue
edge of the spectrometer, making observations of these changes
difficult. The future NASA mission ARCUS will have the UV
capability to be able to measure these differences predicted by
these models.

It is clear that, with the extra opacity in the line wings, the
absorption due to Ly is stronger. This trend is in the correct
direction for the analysis of cool WDs. For example, in S. Sahu
et al. (2023), the spectral fits of Lya were cooler than
determined from the Balmer lines. With the present extra Ly«
broadening, the temperature would have to be increased in
order to match the data, thus decreasing (if not eliminating) the
current temperature discrepancy to the Balmer lines.

The primary results regarding flux distribution are shown in
Figure 11. The differences between the calculations are
apparent between 20,000 and 12,000 K, where most of the
flux of WDs is in the same region as the Ly« line. Figure 11
also shows the visible-light spectrum, focusing on the high-n
Balmer lines. The increased opacity has redistributed some of
the flux from the UV into the visible, and now, the visible is
slightly brighter by up to a few percent. While this may not
seem to be a large increase, it is larger than the estimated errors
(0.5%; R. C. Bohlin et al. 2020) on the HST spectra
calibration that come from atmosphere models like TLUSTY.
Since atmosphere models are used in the calibration of HST
spectra, then the change in the visible flux will modify the HST
calibrations for all other spectra taken with that instrument.

Additionally, we compared the normalized line shapes of the
Balmer series with the new Ly« profiles. Surprisingly, the
normalized line shapes were largely unchanged by the new
Ly« profiles. We therefore expect that, as far as obtaining log g
from the Balmer series, this work will not significantly affect
the determinations of gravity. We do expect that the
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determination of temperature and gravity from the Lyman
series will be affected.

Since the overall flux in the visible is changed, that means
that estimates of WD parameters like radius and temperature
will change. Telescopes like Gaia can measure distances
directly, so atmosphere models can be used to infer stellar radii
and luminosities from the observed photometric intensity, in
addition to the effective temperature and surface gravity.
Changes to the total modeled flux in the visible, where many
WD stars are observed, can therefore modify many different
stellar parameters. For example, if the estimated luminosity of a
star is changed, because of the increase in modeled visible flux,
then the inferred radius or temperature of the star must also
change. A preliminary analysis has shown that the increase in
the modeled flux in the visible will translate to a change in the
effective temperatures in some stars of up to a few hundred
degrees.

Lastly, we want to make a quick note on the dependence
with gravity. For atmosphere models in Figures 10 and 11, we
only showed a “typical” WD gravity, of logg =8. As the
gravity of the star increases, the density at the photosphere
becomes larger. Therefore, the changes in the model are likely
to be stronger, and we would expect changes in the visible
spectrum to be greater for stars with larger gravity. Conversely,
stars with lower gravity will likely not show as large of a
difference in the visible.

A detailed analysis of how much WD temperature, gravity,
or radius determinations change due to the new Ly« profile is
beyond the scope of the current work.

8. Future Work

Unfortunately, the work provided here is not the final word
regarding the most physical Ly« profiles. We have so far
neglected to include the correlations in the density matrix. This
correction to the density matrix has been shown to result in an
asymmetry of the profile (T. A. Gomez et al. 2018). M. Bara-
nger (1958a), as well as U. Fano (1963), has stated that the
inclusion of the correlations in the density matrix will not affect
the line core, and that is why it will often be ignored. When the
detuning, Aw, is of the order of the temperature, 7, this effect
will become significant.

Lastly, there are some trivial frequency dependencies that are
associated with the radiation process that still need to be
included. Trivial frequency dependencies are factors of the
frequency that are intrinsic to the interaction of radiation with
the atom, rather than belonging to the frequency-dependent
broadening caused by the plasma. By this, we mean factors of
w that indicate absorption and factors of w* for the radiated
power (H. R. Griem 1974). These trivial frequency dependen-
cies are often neglected when the focus is on the small range of
w around the line center. In the case that we are exploring here,
we are concerned with detunings ~2 eV from a line at 10.2 eV,
meaning that Aw/ Wiya is of order 20%, which cannot be
neglected.

Additionally, the impact of plasma oscillations has been
neglected here. It is not expected to contribute significantly to
the line shape (H. R. Griem 1974). Plasma oscillations create
satellites at detunings with integers of the plasma frequency
(I. Hannachi et al. 2023), whose intensity depends on the level
of excitations of these oscillations.

We point out that there are other broadening sources beyond
what have been explored here. For instance, neutral broadening
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Figure 11. Comparison of BALROG (dotted—dashed red) and Koester profiles (solid black) in an atmosphere, calculated with TLUSTY. All gravities are set to
log ¢ = 8. The additional broadening in Ly« is apparent. Another consequence of the increased opacity is the rising of the flux in the visible part of the spectrum. Also

plotted is the percent difference in visible flux in dark gray.

has been calculated by N. F. Allard et al. (2000). However, it is
important to point out that a self-consistent calculation that
includes electron broadening, H™', and H satellites does not
exist. Additionally, accounting for accurate collisions involving
three particles has not been included in any calculations.
Simulations can include multiple simultaneous collisions, but,
as pointed out in T. A. Gomez et al. (2024), the satellite
features of even binary collisions are formed at the incorrect
energy.

9. Summary and Conclusions

Broad and saturated spectral lines are an important source of
opacity in hot stars. Therefore, the structure of WD atmo-
spheres is sensitive to the broadening of Lya, so much so that
changes in the wing opacity, which is 10°-10° orders of
magnitude less intense than the core of the line, can affect the
flux distribution of the stellar spectrum even into the visible
region.

In the wings, there are resonant Hj features easily observed
in WD spectra. As in the ion cases, the electrons in the
atmosphere will make transient H™ during their collisions with
the radiators. The industry standard electron-broadening model,
VCS, does not include this effect. In this work, we explored the
effect of H™ on the spectral line shapes and WD atmospheres.

We compared different calculations of electron broadening
of Ly« at conditions relevant to WD photospheres. We point
out that VCS makes a number of simplifying approximations
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that are not applicable to the far wings of the line, which dictate
the opacity in WDs. Under similar approximations, we find that
the VCS calculations agree quite well with other calculations,
such as SIMU and BALROG.

The inclusion of H™ in BALROG caused distinct features to
appear in the spectra. Specifically, there was an enhancement of
the opacity starting around —0.55 eV and continuing to the red
part of the profile. This enhancement corresponds to the H™
autoionizing state, 2s 2p >P. Additionally, there is also a slight
change in the wing behavior due to the 1s* 'S ground state,
which, instead of a broad enhancement, produces more of a
localized feature.

Additionally, the VCS calculations use a limited basis set
when performing their calculations. Neither SIMU or BALROG
are bound by this limitation, and we can increase the number of
atomic states considered for the calculation. Adding more states
usually results in asymmetries and additional redshifts. We,
therefore, see increases in the red-wing opacity in both SIMU
and BALROG. When including up to n = 4, combined with the
H™ features, BALROG predicts 90% to 180% increases in
opacity over VCS between —2 < Aw < —0.5 eV—a
significant enhancement.

When using the BALROG profiles in a WD atmosphere, it has
a severe effect on the Lya spectrum between 20,000 and
12,000 K. The broader profiles substantially increase the
opacity compared to the VCS model. This increased opacity
changes the emergent spectra of the Ly« line. Further, the
additional opacity from the extra broadening causes increases
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in the visible flux. This result will affect HST spectrometer
calibrations and modify the emergent model spectral lines used
to determine the gravity and mass of WDs.

Some of the prominent changes in the line shape are not
observable with the current UV instruments on HST. We
anticipate that the future NASA mission, ARCUS (which is
currently planned to have a UV spectrometer), should be able
to measure the changes we predict in the spectra with ease.

Lastly, we make these profiles available to the WD
community, available to download on the TLUSTY website.'
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Appendix A
Calculation of 7T-matrices

The collision T-matrix is closely related to the collision
amplitude (M. Baranger 1958a). The T-matrix also obeys the
optical theorem, where the imaginary part is related to the total
collision cross section; see Section 2 in the main text. The 7-
matrices are defined in terms of the interaction potential V, the
noninteracting Hamiltonian terms, H,, and an energy para-
meter, 1. We point out that ) has a small implied imaginary
part, and it is understood that we take the limit that the
imaginary part goes to zero. To obtain the desired electron-
broadening operator, we need to consider off-the-energy-shell
T-matrices. Off-the-energy-shell matrix elements are those
where 1 does not equal the energy of either state of the matrix
element, i.e., if we have the matrix element, («|7())|5), then

1/) =E,=E on-shell

Y =E,=Ej half-on-shell (A1)
Y =Ez=E, half-on-shell

Y =E, and v = Eg fully-off-shell

Since the calculations presented here rely on the fully off-shell
T-matrices, we need to modify how we obtain our solution
compared with previous methods; we outline this change here.
We emphasize here that the T7T-matrices are all-order

12 https: //www.as.arizona.edu/~hubeny /tlusty208-package /
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calculations, meaning that we are solving

W = o (A2)
exactly, using a linear solver (i.e., Ax = b) routine,
[1 = V@~ H) 1T@W) =V, (A%)
where
A=[l — V@ —Hy ", x=T@®), andb=V. (Ad)

When exchange is included, the V operator includes a space-
exchange operator as well as a term that depends on the
parameter ),

L L s - e
Ir,,I

Vap = (AS5)

lr, — )l

These calculations are made simple because the V-matrix (and
by extension the 7-matrix) is diagonal in the total spin, S, as
well as the total angular momentum, L.

A.l. Important T-matrix Relationships

An important quantity related to the 7-matrix is the so-called
K-matrix or reactance matrix. The K-matrix is defined as

1
K)=———"7V,
W) = v

¥ —Ho

(A6)

and is Hermitian. The 7-matrix can be defined in terms of K-
matrices:

1
1 + inK ()6 (¢ — Hp)

T®W) = K@). (A7)

The K-matrix is obtained by separating out the real and
imaginary parts of the Green’s function. Here, we use the
definition

1 1 p.v.

= lim - =
v —Hy n-0¢Y+in—Hy ¥ —Hp

— in6( — Hy).

(A8)

The K-matrix can be used to rigorously derive the optical
theorem,

T @)
:K(l/))l — imé(p — Hyp)K (V) 1
1= in6 () — HOK W) 1 + in6 () — H)K ()’
(A9)
then separating the individual contributions,
1
T =K
W = KO 6w — oK P
— K () 5@ — Hy)K () : 1 ’
1 —ind(p — HY)K @) 1 + imdé (Y — Hy)K ()
(A10)
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the imaginary part of the 7-matrix is defined in terms of a
product of T-matrices:

1
I —inb(yp — Ho) K (1)

1
5 — H)K
X o( 0K @) 1 + iné(yp — Hy)K (3)

=T W)6(®W — Ho) T (¥)).

Due to the relationship between the 7T-matrix and the collision
amplitude (M. Baranger 1958a; 1. Bray & A. T. Stelbovics
1992), it is clear how the width (which comes from the
imaginary part of the collision amplitude) can be equated to a
sum of cross sections.

There is another important consequence of the optical
theorem in Equation (A11) having to do with unitarity. The 7-
matrices are closely related to the scattering S-matrix,

IT (W) = —7K ()

(A11)

S =1+ 2iné6(p — Ho)T (¢), (A12)
and the S-matrices are unitary,
SST=1. (A13)

The optical theorem can be derived from the unitary relation-
ship here, meaning that satisfying the optical theorem is a direct
consequence of obeying unitarity. The unitarity property is
important in our calculations as it ensures that the total
probability equals 1. There is also a further statement, not
considered here, about the unitary property being important for
particle conservation. In T. A. Gomez et al. (2021), the
supplementary material demonstrated that Equation (Al1) is
satisfied to machine precision using the method of the solution
described here.

A.2. Calculation of Screened Coulomb Potentials

In the screened Coulomb problem, one can use a partial
wave expansion to define the Coulomb problem in terms of
spherical harmonics (M. C. Zammit et al. 2010),

e Kln-rl

o0
= —dmry i (ikr)h D (irrs) Y Y(F) Yy (7).
|rl - I"2| =0 q

(A14)

which reduces to the usual expression for the Coulomb
interaction,

e_""lrl_r2|

4 A R
Y (7)Y, (7).
2 i 1%: zq( l) fq( 2)

t
r
lim = = (A15)
K0 |1 — 1 Z,: it

However, rather than performing 2D integrals, the Balrog code
instead solves the screened Poisson equation. Given a density

distribution, p(7), the screened Poisson equation is

[VZ — K21V (r) = —4mp(r). (Al16)

In an atomic physics problem, p(r) is a product of wave
functions. Using the expansion in Equation (A 14), we can write
the potential from that density distribution as

47
2t 4+ 1

Y (P). (A17)

V(r)=> Vo)
1q
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Because the spherical harmonic is an eigenfunction of the
Laplace operator, its associated eigenvalue can then replace the
angular part. Lastly, multiplication from the left by Y;;(f), and
then factoring out the angular coefficients gives the resulting
simplified expression for the radial potential,
2
[% Lng) — 52][rv(t)(r)]

= —Q2t 4+ DrR,(r)R, (1), (A18)

which substantially speeds up calculations, and Equation (A14)
is used only to impose boundary conditions. To calculate
rV(’)(r), we use an Ax = b solver, where the A matrix is the
quantity in big brackets of Equation (A18). The differential
operator is replaced by finite difference matrix elements,

-2 1 0 0 .-
1 -2 1 0 -
2 1 -2 1
o 1o b2 . (A19)
dr? (Ar)? :
1 -2 1
0 0 (Ar)?
and the other A terms, i.e., M — k2 are included on the
diagonal of the matrix. If the &b matrix, ie.,

-2t + DrR,(r)R,(r), is left exactly as that and the last
element is left as zero, then the solution at the r = ry boundary
will be forced to zero. Therefore, to accurately calculate the
large r limit of the potential, the exact solution must be
included. This is done by performing the integral of
Equation (A14) for the last point on the spatial grid. The 4,,,
matrix element is set to unity in Equation (A19) to enforce this
boundary condition. We note that forcing the solution to zero at
the origin is the appropriate boundary condition; hence, the
correct solution is generated naturally at » = 0.

A.3. Uniqueness in the T-matrix Solution When Exchange
Interactions Are Included

It is well known that Equation (AS), is stable for on-shell
calculations, but is unconstrained in the off-shell. A. T. Stelbovics
& B. H. Bransden (1989) and A. T. Stelbovics (1990) proposed
the inclusion of additional boundary conditions to obtain unique
solutions regardless of the parameter . I. Bray & A. T. Stelbovics
(1992) used the property

<i’l|fmk> = (_ l)S<im|ﬁ1k>’

where i is an atomic/target state, S is the total spin of the target
+projectile system, and f,; is the scattered wave,

[ i|VIg, i
) = 1006+ 3 w@é‘éﬂ_ E?’kﬁn,

(A20)

(A21)

to obtain a new effective interaction potential that has unique
solutions on the off-shell,

1 1

‘/a:

Iry — 1l Iry|

+ (=DSH = (1 = O)P1B — 0y, (A22)
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where

Iy = lin) (il (A23)

and 6 is an arbitrary nonzero constant. This form is extremely
convenient for on-shell calculations, and the T-matrix solution
is independent of the choice of # for on-shell and near-on-shell
values.

However, this form creates nonunique solutions for off-shell
matrix elements when 1) = 0. Since our calculations required
stable off-shell T-matrix elements, we tried alternate forms of
the interaction potential with the nonuniqueness fix. One choice
was to make 6 independent of 1),

1 1

‘/a:

Ir, — 1l rl

+ (=D’[H — 1B + (=1)’0B — 01, (A24)
which would fix the nonunique issues at ¢ = 0. This form has
its own downside with the principal one being the analytic
behavior of the T-matrix at large . In the limit that |¢)]
becomes large, the 7-matrix should (when exchange is
included) be linear in ),

lim T () x .

P—+oo

(A25)

This behavior could not be achieved unless 6 was extremely
large. Further, when evaluating M ansiend(w) (Equation (20)),
the fifth term became numerically unstable and was not
independent of the choice of 6.

Each form for the effective interaction potential has its own
advantages and disadvantages. The original form of
Equation (A22) is able to produce the expected linear behavior
in Equation (A25) much better and at far lower values of 6, but
had the problem of having nonunique solutions at ¢ = O.
Equation (A24) fixed the nonuniqueness issue at ¢ = 0, but had
numerical difficulties when [i)| became large. For our final
form, the interaction potential that we use is

L~ L (“1)S[H - YR

Iry — 1l Ir|

+ I + ol 0((=1)*F — 1),

V,, =
(A26)

where 1) is some offset that prevents the entire quantity in
brackets from going to zero. The way we have defined it, 1
has to be positive, although this is not a requirement as long as
the entire quantity [|i| 4 1] is the same sign for all <. If one is
concerned with only on-the-energy-shell points, 1/, could be as
small as 0.01 and be sufficient. However, since we are dealing
with off-the-energy shell, we chose a larger value of 100 to
ensure convergence.

The mathematical form of Equation (A26), unlike the
previous forms discussed, has led to invariance of the electron
broadening as a function of ¢ for all terms. The other forms
lead to invariance in the usual broadening terms, such as those
covered in Equation (9), plus terms 3 and 4 of Equation (B1).
But those forms did not lead to unique solutions of terms 1, 2,
and 5 of Equation (B1) that were independent of 6. The new
form of Equation (A26) preserves invariance in all transient
terms.
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A.4. The Real Part of the Green’s Function

In Balrog’s default mode when it performs the integral over
the electron momentum, k, to find the 7-matrix, it assumes that
the potential is constant over some small Ak and then solves
the Green’s function analytically. The integral is evaluated in
terms of a quadrature where the weights are given by

2 (kitkit1)/2
wk) = k. f dk
(ki+ki-1)/2.

where w(k;) is quadrature weights whose solution in this case is

p.v.

_— A27
2@ =) "

lnu—lnu if g >b
q+b q+a
lnb_q—lna_q if g<a
2 q+b q+b
W(k"):ﬁlnb;Z—lnq;Z ifa<qg<b
q q
2 2
z_ =z if g=20
o|2-2| g
2[arctan(a/|q|) — arctan(b/|q|)] if g2 < 0.
(A28)

Here, a is the lower bound of the integration, a = (k; + k;1)/2,
and b is the upper bound of the integration, b = (k; + k;_1)/2.
This expression works well except at low k where there are
issues with convergence. To achieve convergence, integration
to extremely high k is necessary, with E; exceeding 100
hartree.

In this work, we also explored the use of the position
representation of the Green’s function (A. W. Bray et al.
2015, 2016, 2017), which amounted to the same answers as
using the momentum representation described above. We point
out that the position Green’s function routine that we use here
is distinct from that of A. W. Bray et al. (2015, 2016, 2017),
where, instead of using a box basis, we take advantage of some
analytical properties of the Green’s function at large r.

A.5. Convergence of the T-matrix Solutions and Line-shape
Calculations

One of the central computational challenges associated with
this work is dealing with convergence of the close-coupling
equations with an increasing basis size. We want to be clear
that this is a separate issue from the stability of the solutions,
which was fixed by using the condition from Equation (A20).
Convergence of on-shell 7-matrices has already been estab-
lished and is expected; however, this only guarantees stability
at the line center. However, as 1. Bray & A. T. Stelbovics
(1995) demonstrated in Section 5 and Figure 3 of their paper,
fully off-shell or half-off-shell calculations do not converge
with an increasing basis size. This is a problem because our
calculations of the transient parts of the collisions require fully
off-shell T-matrix solutions. I. Bray & A. T. Stelbovics (1995)
attributed this nonconvergent behavior to the energy terms
contained in Equation (A26). Our calculations, which solve for
the T-matrices exactly, suffer from this same problem. This
lack of convergence is demonstrated in Figure 12 for a K-
matrix calculation (upon which the 7-matrix is built), where
convergence is achieved for the on-shell point, but not
anywhere else. We note that changing the value of 6 did not
alter these results whatsoever.
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Figure 12. Half-on-shell K-matrix for the L = 0 partial wave to demonstrate the convergence of the solution as a function of adding states up to a maximum principal

quantum number, nn,c. The incident & is roughly 0.2 in atomic units.

n:1_2 EEmmEEEEE
. [ n =1-3 smmemma ]
o= 10'7¢/cm? fl n=l-d (Em) ===
102 I ;
: I\ I
— 1073 | /’ ‘ !
37 /
[ 1
~ 10_4 E ’ ' E
f Ve ™ )
P e/
-5 e ‘.
10 E /./ e e, I =
"g‘_:““ ~....‘ -~
-6 — - [ ~~<
10~6 bees 1"~.._.
r ";:
10*7 7‘ P BRI S B I I P B I
-3 -2 -1 0 1 2 3
Aw (eV)

Figure 13. Convergence of the Ly« spectrum with increasing n. The dotted black line only includes n = 1 and 2, the dotted—dashed blue line adds n = 3, and the
orange and red lines are n = 4 but with different populations (absorption/emission). Wild oscillatory behavior seen in Figure 12 does not translate to the line profile.
There are singularities in the blue wing of Ly« that correspond to interference between different levels. These features will ultimately translate to asymmetries in the
Lyg and Ly lines. The shapes of the line transition interference vary with the intensity of the neighboring lines compared to Ly, and therefore have a different shape

in emission vs. absorption.

We performed a number of tests with only s states and found
that convergence with basis size could be achieved with direct-
only terms of the V-matrix or when monopole exchange terms
are not included. In other words, when the total angular
momentum, L, equals 1, meaning the projectile angular
momentum, /,, is equal to 1, the resulting K-matrix solutions
were stable. When L = 0, forcing [, = 0, none of the exchange
terms in V resulted in stable K-matrices. This includes the
energy terms as well as the electron—electron term.

20

From Figure 12, it is clear that most of the nonconvergent
behavior occurs at low values of momentum, k. At higher
values of momentum (and especially near the on-shell point),
the K-matrix solution is more stable, appearing to come to
some convergence point. This instability of the low-energy
points is particularly prominent for the 7-matrix elements
involving the ls state. The calculation is sensitive to the
number of high k points included in the basis set even for on-
shell points of 1s in particular.
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Despite the oscillatory behavior as the basis set is increased,
integrated quantities do converge. In our calculations, we found
that the scattered wave (Equation (A21)) does indeed converge
as the basis set increases (even for off-shell scattered waves).
And indeed, we see convergence in the line profile, and the
wild oscillatory behavior is not seen such that there is a clear
trend toward convergence. This is the expected behavior, and
has been seen previously in I. Bray & A. T. Stelbovics (1995).
Due to unitarity of the close-coupling formalism, convergence
in the elastic amplitude ensures convergence in the total cross
section via the optical theorem. This, in turn, means
convergence in the total excitation and the total integrated
ionization cross sections. Accordingly, any integrated para-
meters converge much quicker than individual components,
including K-matrix elements. This is demonstrated in the Ly«
profiles in Figure 13, where we show the evolution of the line
shapes as more states are added. There are increases in the
broadening of the line wings, but the amount of increase
decreases with each n added to the calculation. One of the
features seen when adding new states is what looks to be a
singularity at the Ly(S and Ly~ transitions. Here, what is
referred to as the Ly« profile goes negative. This behavior is
expected and simply reflects the mixing between different
transitions as the density increases. What this ultimately does to
the final spectrum is add some asymmetries to the Ly and Ly~y
transitions; the final line shape when these transitions are added
back in will not be negative. The size of the asymmetries in the
Lya profile depends on the strength of the neighboring
transitions. Therefore, the size of features in the blue wing of
the profile will be different for emission and absorption
profiles, which is due to the differing populations of the upper
and lower states, respectively. The fact that these features have
negative points in the isolated Ly« line shape does not translate
into the final spectrum when all dipole moments are included as
demonstrated in Figure 14.

Aw (eV)

Figure 14. Convergence of the Lya spectrum with increasing n, but including all dipole moments. The singularities in Figure 13 have disappeared underneath the
profiles, and only slight asymmetries are to be seen in the Ly3 and Ly~ lines. The final spectrum, therefore, has no negative points when all dipole moments are
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Appendix B
Capturing the Transient Ages of Electron Collisions

The form of Equation (5) is valid for the line center.
However, this form is not complete for the wings. U. Fano
(1963) points out that there are additional terms that account for
the transient effects of the collision (i.e., the line wings). The
complete expression for the broadening operator can be derived
straightforwardly by writing the frequency evolution of the
dipole operator as a convolution of upper and lower states.
These additional terms are given by

1| TE)THE —w) — TE)THE, — w
Migansient (W) = —1—
2 E — E,
T(E}f + w)TXE)) + T(E} + w)THE])
Ef — Ef
v T(ENTHE — w) + T(EF + w)THE))
o E —w— E
—pv T(Ef + WTXES) — TEITHE, — w)

Ef+w—E, }

]T(¢)T*(1/J - w). B

+

+p

p.v.

0 1 1
'fwdw[w—E,_w—w—E,*

2mi

+

1 1
>< —
1/} - E, 7/] - W= E;’<
This final term is equivalent to the terms

g(E) = g(E) SE + w) — g(Ef + w)

E — E, Ef - EF
_8E) —gE W) s W) —gE) gy
E —w—Ef Ef+w—E,
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given in Equation (55) of U. Fano (1963), where

_ L~ p.-v. o
g(E) = — fm d% T W IOTH — w = i0).
(B3)

The energies with the subscripts denote which side of the 7-
matrix the Hamiltonian operator acts on, with the star
superscript denoting the lower state. Numerical tests on the
final term of Equation (B1), using the form as written or with
Equation (B2), show that they give the same answer, although
the expression in Equation (B1) is more numerically stable.

B.1. Changes from Fano’s Expression

We note that our definition for the last of the transient terms
is different from the definition given in U. Fano (1963) by a
factor of 2. In a rederivation, we found that the presence of the
factor of 2 is in error, having already been factored out of the
brackets. Equation (20) is derived from performing an integral
over

L oo+in 1 B 1
2mi J—cotin v —Hy ¢ —w— Hf
1 _ 1
Y —Hy —w—Hf

x T T — W)[ ] (B4)

Here, small imaginary parts for both 1) and w are implied. The
two quantities in brackets can be further simplified by taking
the eigenvalue depending on whether the Hamiltonian operates
on the left side, /, or right side, r, of the T-matrices, >

1 1 1 1
V-E Y-w-E[|v-E ¢-w-E
1 [ 1 1 ] 1
= - + X X
El_Er "/]_EI /(/)_Er E[_Er

y 1 _ 1
Y-—w-E  ¢Y-w-E

B 1 1 1
E,—w—E,* ¢—E[ Z[}—w—E;k

1 1 1
E,*erE,[wwEl* @/}E,]’
(BS)
where the final expression is obtained by taking the limit that

the small imaginary parts of ) and w, 7, and €, respectively, are
taken to zero:

nN=Jp—-0" e=Jw—-0"n—e=TW —w) — 0.

(B6)
This is accomplished with the relationships
. p.v. )
lim = —imé (Y — E,), B7)
1]—>0¢+i’r]—Er QZ)—Er

13 A sign error in Equation (53) of U. Fano (1963) has been rectified here,
although we note that the sign error did not carry into Equation (55) of
U. Fano (1963).
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and
lim lim ! =
e=0n—=0Y + in — w — ie — E;
p.v. . ES
=——— 4+ ind(¥ — w — E). B8
ot ) (BS)

We repeat a note by U. Fano (1963), where the quantities such
as (E, — E;)"! contain no small imaginary part. However, terms
such as (E;, — w — E)"! do contain a small imaginary part,
i.e., €, and will therefore have real and imaginary components
when the limit ¢ — 0 is taken.

B.2. Implementation

The broadening terms in Equation (9) are relatively
straightforward to evaluate. The evaluation of the first four
terms of Equation (20) is less straightforward, requiring a 2D
integral as well as the evaluation of the energy parameter.

The thermally averaged operator is denoted in the main text
by H(w). For the purposes of the discussion below, we will
denote the transient terms by Hr(w), which is made up of the
various terms,

Hr(w) = HP (W) + HP (w) + HP (W)

+ HP (W) + HP (), (B9)

which are the thermal average of the respective terms in
Equation (20).

The procedure we used here was to integrate over the
variable that was not part of the energy parameter, saving the
interpolation for a later step. For example, for

HY (W)

_ L [TETHE - w)  TETHE - w)
2 E — E, E — E, .

(B10)

the evaluation of the first term is best done by performing the
integral over the state on the right:

Tt ©)
_ 1 fdk (akilT (Ea)|a'ka) (BRIT ()10'k2) 5143
2 2 Eakl - Ea/kz '

(B11)

Likewise, the second term can be evaluated in a similar
manner, but choosing the other perturber coordinate to integrate
first,

Yoo )
_ efg%kgl fd/q (aki|T (Egi,)a’ka) (Dki|T (1) |b'k)
2 Ealq - Ea’kz

s

(B12)
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thus making the evaluation of the first term
) @ = 0| [ i T02, n, By — )

_ f dky X0k, Eqt, — w)].
(B13)

This procedure can be used to efficiently evaluate the first four
terms of Equation (20).

The evaluation of the last term of Equation (20) is more
involved. The first item to be addressed is that, when exchange
is included, the T-matrices (discussed in Appendix A) do not
g0 to zero as |1)| becomes large; this is because V contains a
term that also depends on v (e.g., I. Bray & A. T. Stelbov-
ics 1992, where it was labeled as E), meaning that the 7-matrix
is linear with ¢ (Equation (A25)).

Since we have two factors of 7 within g(F) and then a factor
of ¢ in the denominator, the total function scales as ¢ as |¢/]
becomes large; this is numerically undesirable. An examination
of Equation (48) in U. Fano (1963) shows that, for the
interference terms, the integral converges as ¢)~* (not including
the factor of * in the T-matrices). Therefore, when evaluating
all the factors in that integral, including the 7-matrices should
converge as 1) 2. Rather than evaluating each individual g(E),
we evaluate the total expression as given in Equation (20),
where the contribution to the broadening is

Sy = PV LI !
HE (w)_zﬂifdwffdkldkz[w_ w_w_Ebkl]

aky

L 1
Y —Emn, Y —w-— Epy,

X {aki|T W) a'ka) (PRIT* @) — w) bha)e 2%,
(B14)

1 In q+ki+kiy)/2
lql q—(kj+kis1) /2
2 _ 2
(kj+kjs1) /2 (kj+kj—1)/2

— In

w(kj) = 4

ki+ ki1

Here, the integrals over k; and k, are performed first, using the
technique in Equation (A28), then the final integral over 1) is
performed last.

This final term of the broadening operator is the more
numerically stable form compared to the form presented in the
original U. Fano (1963) work. The reason for this is that this
form has an appropriate cancellation of terms. One of the main
challenges with evaluating the final term of the broadening
operator is that, as the 7T-matrices become large, they become
linear in ; see Equation (A25).

The grid of @ that we choose is not uniform; we
concentrate points in areas of interest, such as thresholds and
H™ resonances. This can cause a number of undersamplings

2
——————| arctan| ——=——=| — arctan
J—2q%—i2n I: ( [—24% —i2n ) (

g+ kj+ki—1) /2
q—ki+ki—p)/2

lqil(arctan((kj + kjt1)/2lql) — arctan((k; + k;—1)/2lqD) if
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or oversamplings of the singularities in Equation (B14).
However, when there is a singularity, such as around
resonances, 7(1)) needs to be properly sampled in the integral
of Equation (B14). If the singularities that appear in the 7-
matrix, such as those around resonances, are poorly sampled,
the integral will not cancel as it should. Further, if one of the
(¢p — E)~" factors is not properly sampled, the integral will
no longer go to zero around featureless points, nor properly
capture when it lines up with a 7T-matrix singularity.
Therefore, we make a grid of ¢ (the prime is used to
distinguish the integral evaluated in Equation (B14) versus
the grid used to evaluate the T-matrices), which is a shifted
grid of ¢ = ¢ — w. This ensures that the singularities are
well sampled and cancel appropriately.

The calculation of Equation (B14) is further complicated
by the real part of the solution trying to capture the H™
ground state, 152 'S, and the excited state, 2p2 3p¢. These H™
states are bound and thus have no imaginary component;
therefore, R7(¢)) is singular in the vicinity of these energies.
This can pose problems evaluating Equation (B14) numeri-
cally that are unique to these states of H™; all other states of
H™ are autoionizing and have some width to them, meaning
that they are not singular as i) — Ey- = 0. Therefore, the
exact numerical evaluation of Equation (B14) is dependent
on the sampling of points in 1 around Ej, and E,,> and is
sensitive to the choice of k-grid, as the k-grid causes slight
changes in the positions of these singularities. As stated
above, this only applies to thermal averages that involve the
'S and the *P¢ angular momentum states. The way around
this is, for these particular spin and angular momentum states,
we assign a small imaginary part to the energy that removes
the singular nature of the states. This creates an additional
case for the numerical weights for the Green’s function
described above:

) if g>>0
if ¢>=0

(B15)
qg* <0

g% < min (Ei + %kz)ms,

where, in this last case, the energy in the Green’s function has
to be less than the minimum energy of the eigenstates in that
TILS, which in the case of 'S would be —0.5 hartree, and in the
case of *P¢ is —0.125 hartree.
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