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Low divergence proton beams from a laser-plasma accelerator
at kHz repetition rate
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Proton beams with up to 100 pC bunch charge, 0.48 MeV cutoff energy, and divergence as low as 3°
were generated from solid targets at kHz repetition rate by a few-mJ femtosecond laser under controlled
plasma conditions. The beam spatial profile was measured using a small aperture scanning time-of-flight
detector. Detailed parametric studies were performed by varying the surface plasma scale length from 8 to
80 nm and the laser pulse duration from 4 fs to 1.5 ps. Numerical simulations are in good agreement with
observations and, together with an in-depth theoretical analysis of the acceleration mechanism, indicate that
high repetition rate femtosecond laser technology could be used to produce few-MeV proton beams for

applications.
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Over the past two decades, ion acceleration with intense
femtosecond laser pulses has emerged as a promising
alternative to conventional accelerators due to its much
higher instantaneous flux, potentially lower costs, and
smaller facility size. Laser-accelerated protons are already
used for target studies for fast ignition [1], studies of warm
dense matter [2], and probing fast phenomena in laser-
matter interaction [3]. However, societal applications of
laser-accelerated protons such as proton therapy [4] and
nuclear physics research [5] require source parameters that
are still out of reach for existing laser-based accelerators
[6,7]. Intense research efforts are dedicated to improving
the source performance in terms of particle energy, average
flux, beam brightness, and overall source efficiency.

TIon acceleration with ultraintense lasers (/j,4 2
10" W/cm?) is currently mostly realized by irradiating
thin (~0.1-10 um) foils, utilizing the well-known target
normal sheath acceleration (TNSA) mechanism [8,9] which
is driven by the thermal pressure of hot electrons generated
by the laser. Commercially available 100-TW-class lasers
deliver TNSA proton beams with energies reaching up to a
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few tens of MeV and 10''-10'3 protons per shot above
1 MeV, depending on target and laser parameters [10].
These lasers typically operate at 1-10 Hz, yet a continuous
operation with thin foils at this rate is very challenging due
to target replenishing needs and debris contamination in the
vacuum chamber.

Another major shortcoming of TNSA proton beams
compared to the ones from conventional accelerators is
their much larger divergence, which ranges from 10° to 30°
FWHM [11-13]. The demand for high brightness has
driven considerable research efforts aiming at reducing
the angular spread of laser-generated beams. Such efforts
include additional collimation devices [14-16], special
target geometries [8,17-30], and targets that enable other
acceleration mechanisms [31-35]. In many cases, target
fabrication and handling, together with stringent laser
contrast requirements for laser-solid acceleration, hinder
the use of these targets in applications where a stable
operation at a high repetition rate is necessary.

With the latest advancements in laser technology, ion
acceleration using kHz lasers is emerging as a promising
path for generating proton beams of sufficient flux and
energy. Studies include both solid targets [36,37] as well as
other types. Recently, Morrison et al. demonstrated kHz
proton beams of up to 2 MeV using a mJ-class laser and a
thin liquid sheet target [38]. Beam divergence with this
target remains however similar to typical TNSA beams and
thus remains a serious limitation for practical use.

In this paper, we demonstrate and analyze a robust,
efficient, and easy-to-implement method for delivering
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FIG. 1. Experimental setup.

highly collimated proton beams at kHz repetition rate using
few-mJ femtosecond pulses. The underlying mechanism is
essentially different from TNSA, and its previous studies
suggested that it is associated with electron motion in
the Brunel heating process [37]. We revisit this process
experimentally with vastly improved laser performance in
terms of intensity and temporal contrast. In addition, we
measure for the first time the angular and energy distribu-
tions of the accelerated protons over a wide range of
interaction conditions by varying both pulse duration and
plasma gradient length. The obtained data were used to
construct a comprehensive theoretical description sup-
ported by detailed numerical modeling. Our findings give
a clear physical picture of the acceleration and its scal-
ability for applications.

The experiment was carried out at the Salle Noire facility
of Laboratoire d’Optique Appliquée (LOA). The laser
delivers 27 fs pulses at a 1-kHz repetition rate with high
temporal contrast (> 10'° at 10 ps). The pulse duration can
be reduced to 4 fs in a hollow-fiber compressor [39] and
increased up to 1500 fs by adding intrachain group delay
dispersion (GDD), while keeping the same energy and
spatial intensity distribution on target. The peak intensity
on target can thus be tuned from 10'¢ to 10" W/cm?.
A schematic layout of the experiment is shown in Fig. 1,
where the 2.5 mJ, p-polarized pulses are focused by an
f/1.3,30° off-axis parabolic mirror (OAP) down to a R}, =
1.8 um FWHM focal spot at 55° incidence angle at the
surface of a rotating fused silica optical substrate. A time-
delayed prepulse is added by picking off ~4% of the main
pulse through a holey mirror and focusing it with the same
OAP to a larger 13 yum FWHM spot. The preplasma
gradient scale length L, ~ Lj + c¢s2; can be controlled
by changing the relative delay ¢, between the prepulse
and the main pulse, where L, corresponds to an additional
expansion induced by the main pulse pedestal due to its
finite temporal contrast. The plasma expansion velocity ¢,
is measured using spatial domain interferometry (SDI) [40].
The high-stability rotating target holder [41] keeps the

target surface position stable within the few-micron
Rayleigh length of the tightly focused main pulse while
refreshing the target surface for shots at 1 kHz.

The proton energy and angular distributions were mea-
sured with a Thomson parabola spectrometer (TPS) and a
charge-calibrated scanning time-of-flight (TOF) detector.
The TPS accepts ions in the normal direction through a
300-pum pinhole placed at about 0.6 m from the target. The
TOF detector consists of a 6-mm diameter microchannel
plate (MCP) placed 375 mm away from the irradiated point
and connected to an 8-GHz oscilloscope. This setup
provides an acceptance angle of 0.9°, such that the broad-
ening of the measured angular profile due to convolution
with the detector size is negligible. To the best of our
knowledge, this is the first time a TOF detector was used
to measure the angular distribution of the beam. Further
details regarding both detectors are available in the
Supplemental Material [42].

Figures 2(a) and 2(b) show proton energy spectra
acquired with the TPS, where each spectrum is an average
of 100 consecutive shots. In Fig. 2(a), the pulse duration is
fixed at 7, = 27 fs and the prepulse delay is varied. The
highest proton energies around 0.25 MeV are achieved
for the steepest gradient and drop below the detection
threshold of 0.1 MeV for the gradients L, 2 4/6. In
Fig. 2(b), the gradient is kept the steepest (0 ps delay)
and the pulse duration is varied. We observe an optimum
around 100-300 fs, where the maximum proton energy
W max reaches 0.48 £+ 0.02 MeV. For the longer pulses, the
maximum proton energy slowly decreases.

Figures 2(c)-2(e) show the angle-resolved TOF spectra
measured for the sharpest plasma gradient and for driving
pulse durations of 4, 27, and 200 fs. For each angle, each
spectrum shown is an average of 100 consecutive shots.
All three measurements in Figs. 2(c)-2(e) show similar
angular profiles and in all cases, the energy-integrated
divergence is ~3° (FWHM). Assuming a two-dimensional
Gaussian angular profile, we calculate the total charge
(above 0.1 MeV) tobe 12 + 2.4, 50 + 10, and 98 + 20 pC,
respectively. The single-axis measurement is indeed fitted
very well by a Gaussian and we expect the beam asym-
metry to be small due to the symmetry of the system, as was
observed in [36] (albeit with much larger beam divergence).
Our estimation of a 20% error originates from uncertainties
in the angular distribution and the TOF calibration, as
described in the Supplemental Material [42].

Figure 2 points out that the acceleration benefits from the
shortest, laser-contrast-limited plasma gradient, and that the
highest cut-off energies are reached for z;,, ~ 100-200 fs, at
the point when the growth W ..  7},, switches to a slow
decrease W o I1,s o 1/7),. This first regime suggests that
for the short pulses, the acceleration is directly driven by the
laser-plasma interaction, while not strongly depending on the
laser intensity. Let us consider a physical picture of a solid
plasma slab irradiated obliquely by a short subrelativistic
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FIG. 2. TPS proton spectra in arbitrary units and logarithmic scale, for 7, = 27 fs and varying plasma scale length (a), and for 0
prepulse delay and varying pulse duration (b). Angular-spectral proton number distributions measured with the calibrated TOF detector

for 4 fs (¢), 27 fs (d), and 200 fs (e).

laser pulse, with field strength ay = eEA/2am.c* < 1,

where Ej,, = /21 ,,/€oc is the peak electric field, A is its
wavelength, e and m, are the electron charge and mass,
respectively, and c is the speed of light in vacuum. The laser
field penetrates the preplasma until it reaches the reflective
layer with electron density 7, 2 n., where n, =/ r A2 is
the critical plasma density and r, is the classical electron
radius. Within this layer, the laser introduces the radiation
pressure P4 = 2cos’01,,/c, which expels plasma elec-
trons until it becomes balanced by the electrostatic pressure
P. For a short preplasma gradient, L, < 4, the laser and
electrostatic fields beyond the penetrated layer are instantly
screened by the dense plasma, enabling the well-known
Brunel absorption [43]. Owing to this screening, electrons
escape deep into the plasma without building up a dense
negative layer, thus allowing ions to generate a long-range
accelerating field. For the considered laser intensities, the
preplasma consists of only partially ionized Si, O, and C ions,
and a small fraction of protons (see Sec. IC and S-Fig. 3 in the
Supplemental Material [42]). The latter has a much higher
charge-to-mass ratio than heavier ions, 1/m, > Z;/M; and
can thus be quickly accelerated in the electrostatic field of
this positively charged preplasma before its own Coulomb
explosion.

Let us now consider a simple quantitative description of
the physical process described above. We assume a plasma
with initial density, n,y > n., that is uniform for z < 0, and
falls as n, = ny, exp(—z/L,) for z > 0. The thickness of
the un-neutralized ion layer created by the laser pressure
can be estimated from the balance condition, P, ~ P,,q, as:

ar)
€011as ,

enyL,

~L, In|——= 1
“ gn<2cost9 m

where ¢ is the vacuum permittivity (for details see [42]).
For z > z, the field profile can be estimated theoretically
by considering the model of a thin charged disk:

en (<0

Z

\/z2+R12>’

Elas(t) cos 0
2
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where E,, is the amplitude of the laser electric field, and the
size of the charged ion disk is determined by the projected
laser spot size as R; = R),s/ cos 0. In the particular limit
when the acceleration length is short compared to the field’s
scale R; and long compared to the preplasma scale L,,
one may discard the geometric factors in Eq. (2) and
calculate the proton energy obtained in the field E, =
(1) cos 6/2 over the laser duration as

Ez(t7 Z) =

(2)

2

In2 e

T

Wlas Tlas

Winax = R
i

(3)

m,c €

where Wy, is the laser energy. Noting that the field in
Eq. (2) vanishes for z 2> R;/2, and limiting the full
interaction time by 27, we can define the validity
condition for Eq. (3) as (v,)7,s < R;/4, where (v,) =

v/ Wax/2m,, is the proton velocity averaged over the
acceleration duration. At its limit, this condition defines
a case when protons reach the vanishing field by the end of
the interaction, and it thus defines the optimal acceleration
regime. Applying this condition to Eq. (3), we obtain the
scaling
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mm, 4cey R
which suggests that the maximum cutoff energy depends
neither on the plasma nor on the preplasma features (as long
as L, < /) but is determined solely by the laser energy and
its projected spot size. More details on the theoretical
analysis can be found in [42].

The described mechanism relies on the persisting /y,,, and
as soon as the laser pressure is gone, electrons flow back into
the charge separation region and can drive a consequent
TNSA process. For a short preplasma and a short laser, the
electrons that refill that region are cold, and this remnant
acceleration turns out to be insignificant. For the longer laser
pulses, the expansion of the heavier ions breaks the sharp
plasma interface, and TNSA occurs during the laser action.
This can also be observed in Figs. 2(c)-2(e), where the short-
pulse cases (c,d) show all energies being contained within 2°
half-angle, while in the 200-fs laser case Fig. 2(e), the
angular divergence of protons with W, <0.15 MeV
increases. We note that the TOF measurements in the latter
case also indicate that low energy protons (below 0.07 MeV)
get intermixed with heavier ions, resulting in an increased
divergence of the aggregate signal (up to 5° FWHM). This
divergence degradation at longer interaction times cannot
be easily avoided, and it restricts the optimal laser durations
to not exceed 100-200 fs (weakly depending on the ion
composition).

For more details and to verify this interpretation, we
consider 2D particle-in-cell (PIC) simulations using the
code WarpX [44]. In the simulations, the preplasma has an
exponential profile with L, = 8 nm and the laser pulse of
3 mJ energy is focused on the surface into a 1.8-ym spot
(see [42] for details). Figure 3(a) compares the proton
cutoff energy for various pulse durations measured in the
experiment, simulations and provided by the analytical
model Egs. (1)—(3). All data sets agree well with each other.
While the cutoff energy follows the measured and predicted
flat scalings for long laser pulses, the details of the protons’
spectral-angular distributions in Figs. 3(b)-3(d) reveal clear

signatures of the TNSA process which severely degrades
the resulting divergence. For 7, =30 fs, all protons
remain well collimated, 7;,, = 100 fs develops high diver-
gence for slower protons, and 7,, = 250 fs generates a
divergent TNSA beam. Note that this TNSA signature is
much more pronounced in the modeling than in the
experimental measurements, which we may explain by
the specificity of the simulated 2D geometry. While
the considered proton acceleration is essentially one-
dimensional and should not depend significantly on the
transverse dimensions, the 2D PIC simulations are known
to greatly enhance the TNSA process and were shown to
result in twice more efficient acceleration compared to the
full 3D geometry [45].

We may refer to the described mechanism as radiation
pressure assisted Coulomb explosion (RPACE). So far we
have obtained the scaling of the maximum proton energies
and have identified optimal conditions, but have also
discovered that subsequent TNSA degrades the beam
quality, thus limiting RPACE to the shorter laser durations.
This process is governed by multiple parameters (laser
intensity, duration, and ion composition), and one may
expect that the rate of such degradation increases for higher
laser energies as the electron temperature grows and TNSA
intensifies. This tightens the limitation of RPACE with
respect to the laser duration and imposes a suboptimal
source performance with the maximum proton energy
following the scaling Eq. (3). Practically, for a given laser
energy and focusing geometry, the maximal pulse duration
that preserves the low proton beam divergence should be
found. In order to check the energy scaling, we consider a
case with a laser of 30 mJ energy, 70 fs pulse duration, and
2.5 ym focal spot size. The simulated angular-spectral
protons distribution is shown in Fig. 4 and indicates the
energy cutoff at %2 MeV, which is in very good agreement
with the expected cutoff at 1.9 MeV according to Eq. (3).
While faster particles remain well collimated, Fig. 4
indicates that the protons with energies W, < 1.4 MeV
suffer the TNSA-induced increased divergence. We antici-
pate that in the full 3D geometry, this threshold should be
well below 1 MeV. In Fig. 4, one may also note the angular
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FIG. 4. Final angular-spectral distribution of protons for a laser
energy of 30 mJ and 70 fs pulse duration.

modulations appearing for W, < 0.5 MeV. These result
from the surface plasma wave, which is excited by the laser
and modulates the transverse spatial structure of the
accelerating fields.

In summary, we have measured proton beams with
unprecedented low divergence, generated at kHz repetition
rate over a wide range of laser and plasma parameters. The
divergence was found to be as low as 3° FWHM, about an
order of magnitude smaller than thin foil TNSA proton
beams. Proton energies reaching up to 0.48 & 0.02 MeV
for an optimal pulse duration ranging from 150 fs to 300 fs
were measured with the steepest plasma-vacuum interface.
The total charge reached a maximum of 98 + 20 pC above
0.1 MeV, giving an average current of ~0.1 yA. The
RPACE acceleration mechanism was identified in simu-
lations and theory, showing that the surface protons
Coulomb-explode after the laser radiation pressure evac-
uates preplasma electrons into the dense target. The scaling
and optimal conditions for proton energies were obtained
and discussed.

The demonstration of these unique proton beams is
promising for numerous applications, some of which are
within reach. Notable applications are ion implantation
[46,47] and the production of radioisotopes for positron
emission tomography (PET), which requires energies of a
few MeV [48,49]. Such energies could be reached with
readily available systems providing few-tens-mJ pulses
according to our analysis.
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