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Supervisor’s Foreword

It is my pleasure to introduce Dr. Dimitry Mikitchuk’s Ph.D. research for publi-
cation in the Springer Thesis series. Dr. Mikitchuk was awarded his Ph.D. from the
Weizmann Institute of Science in January 2017 for the research presented in this
book. The main subject of his experimental study is the investigation of the
compression of magnetized plasma and magnetic field by plasma implosion. This
subject is relevant to the Magnetized Liner Inertial Fusion and likely to astro-
physical plasmas, such as sunspots or other astrophysical objects where the mag-
netic flux is frozen in an imploding plasma. Here, the magnetized plasma and
magnetic flux compression are achieved by using a Z-pinch configuration with
preembedded axial magnetic field. A pulsed axial current is driven through the
plasma column generating an azimuthal magnetic field that through the Lorentz
force compresses the magnetized plasma and the magnetic flux. The diagnostics
of the magnetic fields are performed using a noninvasive spectroscopic technique
based on the polarization properties of the Zeeman components of different atomic
(or ionic) transitions, which enhances the sensitivity of the measurement. In his
Ph.D. research, Dr. Mikitchuk made a highly important contribution to the
understanding of the physics involved in magnetized plasma compression by the
successful determination of the magnetic-field and current-density distributions in
the non-equilibrium, transient plasmas. Specifically, his measurements include:

(i) Development and implementation of localized magnetic-field spectroscopic
diagnostics for pulsed-power systems based on the polarization properties
of the Zeeman effect and using dopant species introduced by laser ablation.

(ii) Direct measurement, for the first time, of the compressed axial magnetic field
evolution and distribution during the implosion and stagnation in a Z-pinch
with preembedded axial magnetic field utilizing noninvasive spectroscopic
methods.

(iii) Simultaneous measurement of the axial and azimuthal magnetic fields
revealing unexpected results of the current distribution and the nature of the
pressure balance of the axial and azimuthal fields.
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(iv) Investigation and demonstration of the mitigating effects of preembedded axial
magnetic fields on magneto-Rayleigh-Taylor instabilities in Z-pinch implo-
sions, using interferometric and imaging methods.

These measurements are basic and essential for the advancement of the under-
standing of complex plasma systems, both in laboratory and in nature. Since the
magnetic field is a key factor in magneto-hydrodynamics modeling, the results are
highly important for examining simulations, as well as for designing plasma con-
figurations that are particularly relevant to the presently central Magnetized Liner
Inertial Fusion approach.

Rehovot, Israel
January 2019

Prof. Yitzhak Maron
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Abstract

In this research, I investigated fundamental phenomena occurring as magnetic-field
flux and magnetized plasma are compressed by applied azimuthal magnetic fields.
This subject is relevant to numerous studies in laboratory and space plasmas.
Recently, it has gained particular interest due to the advances in producing plasmas
of high temperature and density in experiments based on the approach of magne-
tized plasma compression [1]. Many in the plasma physics community consider this
approach to be the most promising for achieving controlled nuclear fusion. To
advance this approach, it is essential to study experimentally the governing physical
mechanisms that take place during the compression. Performing the required sys-
tematic experiments is impractical in large-scale facilities designed for fusion
demonstration.

In our experiment, we employ a cylindrical (Z-pinch) configuration, in which a
current (300 kA, rise time 1.6 ls) driven through a cylindrical plasma causes
implosion of the plasma under the self-generated azimuthal magnetic fields (Bh).
However, our cylindrical plasma is initially embedded in an axial magnetic field Bz.
The field is quasi-statically applied prior to the high-current discharge, with a value
of 0.4 T.

Here, for the first time in these researches, Zeeman-splitting observations are
used to measure the evolution and spatial distribution of Bz and Bh during the
implosion and stagnation stages. The two fields are measured simultaneously,
which is rather important due to the irreproducibility that characterizes such
experiments of high-current pulses. The difficulties in these measurements are due
to (1) the high electron densities in the plasma giving rise to large Stark broadening
that smears out the Zeeman pattern, (2) the difficulty in distinguishing between Bz

and Bh, and (3) the absence of light emission from the center of the plasma column.
Indeed, in previous studies, under similar conditions, the B-fields were only indi-
rectly estimated from the plasma radius. These challenges were achieved by
employing a novel spectroscopic technique based on the polarization properties of
Zeeman split emission, combined with a laser-generated doping technique that
provided mm-scale spatial resolution.

vii



Systematic measurements were performed for different initial conditions of Bz

and gas loads. The measurements showed that estimates of the B-fields based on the
plasma radius are subjected to large errors and thus unreliable. Indeed, the simul-
taneously measured Bz and Bh, together with the plasma radius and the discharge
current, showed that the application of an initial Bz has a dramatic effect on the
current distribution in the plasma. While without Bz the entire current is found, as
expected, to flow through the imploding plasma, when an initial Bz is applied, the
measured Bh (through r�~B ¼ l0~j) showed that only a small part of the current
flows within the outer radius of the imploding plasma. Specifically, when
Bz0 ¼ 0:4 T, the value of Bh in the imploding plasma shell remains nearly constant
(between 1.5 and 2 T) during the implosion, even though the current rises and the
plasma radius drops. This finding indicates that for implosions with Bz0 [ 0 large
fraction of the current flows in the peripheral plasma residing at radii larger than the
imploding plasma radius. A theoretical model, based on the development of a
force-free current configuration in the peripheral plasma, is suggested to explain
this unexpected phenomenon. To rigorously test this model, self-consistent 3D
MHD simulations are required.

In addition to these results, the measurements provide much information useful
for the understanding of the Bz-embedded plasma implosion. We measure at
stagnation a � 15� compression of the initial axial B-field. This compression
factor, together with the observed plasma radius, allows for obtaining the Bz con-
finement efficiency, which is found to be � 50%. This information is useful for
testing MHD codes. Another phenomenon observed is an axial gradient of Bz in
which its magnitude increases by a factor of 2 from the anode (low Bz) to the middle
of the plasma column (z� 5 mm, high Bz). This measurement demonstrates the
existence of a transition region from the uncompressed Bz ¼ Bzðt ¼ 0Þ inside the
electrodes to the compressed Bz farther away from the electrode surface.

The spectroscopic measurements were complemented by 2D images of the
plasma self-emission and by interferometric images. These measurements were
important both for obtaining the B-field evolution and for the study of the depen-
dence of instabilities on the different initial conditions. The measurements clearly
showed the mitigation effect of Bz on the magneto-Rayleigh-Taylor instabilities.

The 2D images have also shown the existence of axially directed, filament-like
regions that have significantly higher emission than the surrounding plasma. These
filaments were found to be plasma regions with higher electron density (by 10–
20%), and slightly lower electron temperature (by a few percent) than of the sur-
rounding plasma.
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Chapter 1
Introduction

1.1 Motivation

The evolution of a magnetic field that is embedded in a conducting fluid is closely
linked to the fluid motion. Because of the freezing of the magnetic field flux into the
conducting fluid, the fluid carries with it the magnetic field lines. Due to the fluid
motion, the magnetic field lines are often compressed, bent, and even get distorted,
until processes of diffusion allow reconnection of lines and a change of their topology.

Plasmas exhibit this behavior of conductive fluids in space and laboratory, as they
have high conductivity and are amenable to motion due to electromagnetic forces.
There are ample examples in space plasmas for this coupled plasmamotion andmag-
netic field evolution. The solar wind makes the earth magnetosphere asymmetrical
by impinging on it, pushing on the magnetopause at the sun side and entraining the
magnetic field lines forming the elongated magnetotail on the night side [1]. On the
photosphere of the sun the intensity of the magnetic field reaches kG level in small
regions, apparently due to compression of flux tubes by plasma flow [2].

Plasma and magnetic-field flux compression is an important process also in mag-
netized plasmas in the laboratory. In certain magnetized plasmas, the plasma motion
is manipulated by the magnetic field, such as in pinches [3], Tokamaks [4], and
plasma thrusters [5]. In other magnetized plasmas the magnetic field evolution is
controlled by the plasma motion [6].

Recently, the phenomenon of simultaneous compression of the magnetic field and
plasma has steered much interest because of its potential application for controlled
thermonuclear fusion [7]. Pulse-power-driven Z-pinches are being considered as
sources of x-rays upon stagnation [8]. These x-rays could be used to drive inertial
confinement fusion (ICF) capsules. However, the efficiency of converting the kinetic
energy of the pinch into x-rays and then back to kinetic energy of the imploding target-
capsule is very low. The alternative path for fusionwithin ICF, proposed in the current
configuration by Slutz et al. [7] in 2010, is to first magnetize the fusion fuel within
a liner by external field coils. An axial current is then applied and compresses the

© Springer Nature Switzerland AG 2019
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2 1 Introduction

solid-cylinder and the fuel inside it. The initial axial magnetic field is expected to be
frozen into the fuel and subsequently to be compressed as the liner implodes. Ideally,
due to the implosion the magnetic field strength is expected to rise dramatically and
confine the fuel-plasma in the radial direction, thereby enabling the formation of
the desirable conditions for fusion. For the realization of this attractive scenario it is
crucial to understand the governing physical mechanisms. For example, one has to
examine to what extent the magnetic field is frozen into the plasma and whether the
plasma resistivity allows for diffusion of the magnetic field, which competes with
the flux compression.

Laboratory experiments, in which the coupled evolution of magnetic field and
plasma is explored, can greatly contribute to the understanding of these fundamental
processes (e.g., [9–11]). The recent rising interest in compressingmagnetized plasma
follows more than two decades of related experimental [12–17] and theoretical [18,
19] research. However, reliable detailed diagnostics, particularly that of the magnetic
field evolution, which is essential to advance the research, is still missing. Therefore,
the main goal of the present study was detailed investigation of the magnetic field
evolution and distribution in a magnetized plasmas. Here, a laboratory experiment
on flux compression is studied by the application of advanced, non-intrusive, spec-
troscopic techniques to measure the plasma conditions and the magnetic field. The
investigated configuration consists of a cylindrical gas-puff from a nozzle with an
embedded (initially uniform) axial field ( �Bz = Bz0 ẑ). When an axial current (I ) from
a pulsed power generator is applied, the gas is ionized and radially accelerated inward
by the current self-generated azimuthal magnetic field (Bθ), thus compressing the
preembedded Bz .

If the plasma acts as a perfect conductor, i.e., the axial magnetic field is frozen
into the plasma, then Bz increases as Bz0(R(t = 0)/R(t))2, where R(t) is the plasma
radius at time t . However, there are arguments that this simple picture of flux com-
pression does not entirely hold. For example, inside the metal electrodes, located at
each end of the pinch, the flux is truly frozen at its initial value. Hence, the magnetic
field lines exit the electrodes at their initial radial position and are pulled into the
plasma as it implodes. In other words, the plasma must have a finite resistivity which
allows the field to diffuse near the two electrodes. Therefore one of the main goals of
the present work was to measure the axial magnetic field distribution and evolution.

The efficiency of the compression is also affected by instabilities. It is known
that the axial magnetic field may stabilize the magneto-Rayleigh-Taylor instability
(MRTI) [12, 20]. Therefore, one of the objectives of the present work is the investi-
gation of the effects of the axial magnetic field on plasma instabilities.

Table 1.1 summarizes the parameters of the previous and current experiments of
Bz-flux compression by an imploding plasma. From the table we see that the subject
of Bz compression by plasma implosion was studied in a wide range of experimental
parameters. Most of the laboratories employed a gas-puff load, as in our experiment,
since it facilitates the systematic study of the compression due to the possibility
of high repetition rate of the plasma generation. Here we choose a relatively low
value for the current (and thus low value for Bz0) that allows for the application of
UV-Vis spectroscopy. It is assumed that the fundamental physical processes of the



1.1 Motivation 3

Table 1.1 Experimental parameters of previous and current studies of the Bz compression by
Z-pinch implosion. The studies are presented in a chronological order

Institution,
driver

Load
configuration

Load
composition

I0
MA

trise
ns

R0
mm

Bz0
T

References

UC Irvine Single-shell
gas-puff

He, Ar,
Kr, Xe

0.5 1250 20 0 ≤ B ≤
1.5

[12]

Sandia,
Proto-II

Single-shell
gas-puff

Ne 7.5 60 12.5 5.5 ≤ B ≤
10

[13]

Imperial
college

Quartz tube,
Pyrex tube
with gas

H2, D2,
He, Ne,
Ar, Kr

0.53 2000 15,
26.7

0 ≤ B ≤ 1 [14]

HCEI,
IMRI-5

Double-shell
gas-puff

Ne 0.4 430 22, 30, 0 ≤ B ≤
0.2

[21]

Troitsk,
Angara-5

Wire array Tungsten 2 800 10 0 ≤ B ≤
1.4

[15]

HCEI
GIT-12

Double-shell
gas-puff

Ar 2.5 300 40 0 ≤ B ≤
0.6

[22]

HCEI,
MIG

Single-shell
gas-puff

D2, N2,
Ne, Ar

1 150 14 2.5 [17]

Sandia, Z Solid liner Beryllium 19 100 2.5 10 [23]

WIS Single-shell
gas-puff

Ar 0.3 1600 19 0 ≤ B ≤
0.4

[24, 25]

HCEI,
IMRI-5

Metallic
gas-puff

Bismuth 0.45 450 ∼20–
30

0.15 ≤
B ≤ 1.35

[26, 27]

Michigan
university,
MAIZE

Metallic
foil

Aluminum 0.58 250 3 0 ≤ B ≤ 2 [28, 29]

Cornell,
university,
COBRA

Double-shell
on jet
gas-puff

Ar 1 200 30 0 ≤ B ≤
0.6

[30, 31]

University of
Nevada, Reno
ZEBRA

Single-shell
on jet
gas-puff

Ar, Kr
D2

1 100 11 0≤ B ≤
0.15

[32–34]

magnetic field and magnetized plasma compression are the same over a wide range
of experimental parameters.

1.2 Z-Pinch Principle and Practical Considerations

In the following, a short introduction into Z-pinch physics is given. For a deeper
introduction, there are several reviews and a textbook available [35–40]. For the
theoretical background we mainly follow the recent review of gas-puff Z-pinches by
Giuliani and Commisso [35].



4 1 Introduction

Fig. 1.1 Main stages of Z-pinch evolution without axial magnetic field. Left, middle, and right
figures are respectively, the breakdown, implosion, and stagnation stages. �Iz is the axial current, �Bθ

is the azimuthal magnetic field generated by the axial current, �Jz × �Bθ is the inward Lorentz force,
and �Fp is the outward force due to the thermal pressure gradient

Fig. 1.2 Main stages of Z-pinch evolution with pre-embedded axial magnetic field. Left, middle,
and right figures are respectively, the breakdown, implosion, and stagnation stages

The Z-pinch is a cylindrical plasma configuration through which an axial elec-
tric current is driven. The current is usually generated by a pulsed-power generator.
The interaction of the axial current with the self-generated azimuthal magnetic field
(Lorentz force �j × �B) results in the plasma implosion toward the symmetry axis (typ-
ical implosion times are in the range 100ns–1µs). During the implosion, the plasma
acquires kinetic and thermal energy due to the Lorentz force and Ohmic heating and
eventually looses most of its energy to electromagnetic radiation. Different stages
of the Z-pinch implosion without (classical Z-pinch) and with Bz are depicted in
Figs. 1.1 and 1.2.

The usual scenario of a Z-pinch evolution consists of three main stages:

• First stage—generation of plasma: breakdown, avalanche ionization and initial
heating of a gas. In some cases, prior to the breakdown occurs also vaporization
of solids (metallic wires, foil, fibers).

• Second stage—implosion: further ionization and heating of the plasma by resistive
heating (η · j2, η is the plasma resistivity, and j is the current density), and by
adiabatic compression due to the Lorentz force ( jz · Bθ). Inward acceleration of
the plasma shell due to the Lorentz force. In the case of implosion with Bz , there
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is also compression of Bz that results in increase of the magnetic energy stored in
the Bz-field.

• Third stage—stagnation: the kinetic energy of the imploding plasma is converted
into thermal energy and subsequently lost through radiation. In the case of implo-
sion with Bz , part of the kinetic energy is transformed into the Bz-field energy. It
is important to note, Kroupp et al. [41] showed that in classical Z pinches at stag-
nation the kinetic energy of the implosion is first converted into the hydrodynamic
motion, probably turbulent, and later is dissipated into the thermal energy due to
the ion viscosity.

Z-pinches are studied in a wide range of initial conditions and plasma parameters.
The range of typical values for these parameters is listed below:

• Stored energy in capacitors of a pulsed-power generator: few tens J—22 MJ
(Sandia Z machine [42]).

• Peak current of a pulsed-power generator: few tens of kA—26 MA (Sandia Z
machine).

• Rise-time of the current pulse (correlated with the plasma implosion time): few
tens ns—few μs.

• Initial radius of the plasma: ∼1–50 mm (note that Z-pinches with a single wire
load, the wire radius is�1 mm, however, during the vaporization stage it expands
to ∼ mm scale).

• Length of plasma (anode-cathode gap): few mm–20 mm.
• Initial axial magnetic field: 0.1–10 T.
• Electron density, ne: > 1017–few 1023 cm−3.
• Electron temperature, Te: few eV–10 keV.

There are a variety of load configurations fromwhichZ-pinch plasma is generated,
themost common configurations studied today are: (i) gas-puffs [35]; (ii) wire-arrays
[36], and (iii) solid liners [43]. In the present experiment, a gas-puff load is used due
to several advantages that are important for systematic Z-pinch investigation:

(i) possibility of multiple discharges without breaking vacuum and relatively high
repetition rate for the shots (≡discharges). For example, in the present exper-
iment, the vacuum chamber is opened for cleaning every ∼100 shots and it is
possible to perform ∼4 discharges per hour;

(ii) High flexibility in controlling the initial distribution of the load line-mass (mass
per unit length). For example, in the present experiment the line-mass can be
easily varied from< 1µg/cmup to∼100µg/cmby changing the initial gas den-
sity or gas species. Additionally, gas-puff systemswith several nozzles allow for
the control of the load radial density distribution that is important for mitigation
of the magnetic Rayleigh–Taylor instability [44, 45];

(iii) Ease to use hydrogen isotopes as a Z-pinch load for fusion research purposes
(or neutron sources), since they are in the gas phase in a wide range of pressures
and temperatures.
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Besides the advantages described above, there are also several challenges and limits
when utilizing of gas-puff loads. Below, these challenges are discussed together with
their solutions in the present experiment.

(i) Axial and azimuthal uniformity of the initial gas distribution. To minimize the
radial divergence of the gas along theA-K gap, the nozzle of the gas-puff system
is designed to generate uniform, collimated supersonic flow using converging-
diverging geometry as shown in Fig. 2.2 (such geometry is called de-Laval
nozzle). The uniformity and collimation can be disrupted in the boundary layers
at the inner and outer radii of the nozzle due to the friction of the gas-flow with
nozzle walls (for more details see [46]).

(ii) Backscattering of the expanding gas from an opposite electrode into the
A-K gap. To minimize the amount of backscattered gas, the opposite elec-
trode is made of wire-mesh (or some other semi-transparent structure) and the
discharge is initiated before a significant amount of the backscattered gas fills
the A-K gap.

(iii) Uniformity of the gas-breakdown. To achieve uniformbreakdown, the gas inside
the A-K gap is usually pre-ionized by UV radiation or an electron beam. In
addition, the opposite to the nozzle electrode has a knife-edge attached to the
wire-mesh (see Fig. 2.1).

(iv) Gas-puff loads have some limitation on the maximum particle density they can
generate. The particle density is set by the initial pressure supplied to the gas-
puff system and the gas expansion in the nozzle. Most of the gas-puff systems
operate in the 1016 − 1018 cm−3 range, but some special designs can reach
particle densities of up to∼1020 cm−3 in the A-K gap. In general, high densities
might be required in very-high-current devices together with the requirement
of small initial radius.

1.2.1 Magneto-Hydrodynamic Description
of Z-Pinch Dynamics

The Z-pinch dynamics is usually described using magneto-hydrodynamic (MHD)
models. Magneto-hydrodynamics studies the dynamics of conducting gases and flu-
ids in electromagnetic fields where the fields and fluids equations are coupled. The
presence of an electromagnetic fieldwhere a conductingfluid is inmotion results in an
induction of electrical currents inside the medium. The induced currents, on the one
hand, interact with themagnetic field in the form of the Lorentz force that changes the
hydrodynamic motion of the fluid. On the other hand, the induced electrical currents
change the electromagnetic field. MHD attempts to describe this coupled evolution
of the conducting fluid (plasma) and the electromagnetic field, namely, beside the
plasma equation of motion,MHD includes alsoMaxwell’s equations and Ohm’s law.



1.2 Z-Pinch Principle and Practical Considerations 7

Here, we present the equations used for the single fluid MHDmodel without includ-
ing the radiation and ionization processes. The radiation losses and internal energy
due to ionization and excitations, which are usually important in Z-pinch models,
are considered here using lumped terms in the energy balance equation. We follow
mainly the MHD description given in Giuliani and Commisso [35], and Braginskii
[47]. Note,

(i) in both references the equations are given in cgs units, while we present them
using the SI units due to the convenience of using Ampere and Volt units in
calculations that appear later in the text.

(ii) Terms in equations that include the Boltzmann constant (kB) explicitly, have
a temperature in Kelvin (K). When temperatures are expressed in electron-
volts (eV), it is explicitly written next to the variable. Similarly, densities are
expressed in the m−3 unit except when the cm−3 is explicitly written next to
the variable. Here, the transport coefficients equations are given also using eV
and cm−3, since these units are convenient and are widely used by the plasma
community.

(iii) The equations are given for fully ionized, not magnetized plasma, i.e., ωce <

νei (ωce—the electron cyclotron angular frequency, νei—electron-ion collision
frequency). In general, Z pinches might have regions where the electrons are
magnetized, for such case the transport (electrical current, momentum, heat) in
the plasma has to be distinguished between transport along the B-field direction
and perpendicular to it (for more details see [47]).

The one fluid MHD equations are:

• Absence of magnetic monopoles:

∇ · �B = 0 (1.1)

• Faraday’s law:
∂ �B
∂t

= −∇ × �E (1.2)

• Ampere’s law without the electric displacement field term. This term can be
neglected when the plasma velocity v ≈ vi (vi—ion velocity)�c (speed of light).
This condition is satisfied by all Z-pinches.

∇ × �B = μ0 �j (1.3)

�j is the current density, μ0 is the vacuum permeability.
• Generalized Ohm’s law (commonly used to express electric field in plasma):

�E = −�v × �B + η �j + �j × �B
ene

− ∇ pe
ene

+ �j · �RT

ene
+ me

e2ne

d �j
dt

(1.4)
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with

η = αe
meνei

nee2
= 3 × 10−12 · αe

me Z̄ln(�)

e2T 3/2
e (eV)

= 10−4 · αe
Z̄ln(�)

T 3/2
e (eV)

(� · m) (1.5)

νei = 3 × 10−6 · ne(cm
−3)Z̄ln(�)

T 3/2
e (eV)

(1.6)

αe ≈ 1 + 1.2Z̄ + 0.22Z̄2

1 + 2.97Z̄ + 0.75Z̄2
(1.7)

�RT = −αqnekB∇Te (1.8)

η is the plasma resistivity, ln(�) is the Coulomb logarithm, Z̄ is the average
charge state, νei is electron-ion collision frequency, αe is a factor introduced
due to the electron-electron collision effects that tend to relax the electron dis-
tribution function into the velocity shifted Maxwellian distribution. Equation 1.7
is an approximation of the αe factor that is 0.5129 for Z̄ = 1 and 3π/32 for
Z̄ → ∞ (for more details see [48]). RT is a thermal force that originates from the
v−3 dependence of the Coulomb collision cross section on the electron velocity,
resulting in a friction force between ions and electrons when ∇Te �= 0. αq is a
factor that depends on Z̄ (αq for selected values of Z̄ is given in Table 1.2). To
convert the generalized Ohm’s law from SI to cgs units one has to replace the
�v × �B and �j × �B/(ene) terms in Eq.1.4 by �v × �B/c and �j × �B/(cene), respec-
tively, and use η(sec) = 1.1 × 10−10 · η (�·m). To convert equations with Te
expressed in eV into equations with Te expressed in Kelvin, substitute Te(eV)
by kb(eV/K)T(K) ≈ 8.62 × 10−5 · T (K).

• Continuity equation:
∂ρ

∂t
+ ∇ · ρ�v = 0 (1.9)

ρ ≈ neMi/Z̄ is the plasma mass density, Mi—ion mass.
• Equation of motion (repeated subscripts indicate a sum over all the three coordi-
nates):

ρ
∂�v
∂t

+ ρ(�v · ∇)�v = −∇(pi + pe) − ∂�αβ

∂xβ
+ �j × �B (1.10)

with

�αβ = −ηvisc

(
∂vα

∂xβ
+ ∂vβ

∂xα
− 2

3
δαβ∇ · �v

)
(1.11)

ηvisc(Pa · s) ≈ 0.96 · nikBTiτi i ≈ 3.2 × 10−6 A
1/2T 5/2

i (eV)

Z4ln(�)
(1.12)

τi i ≈ 2 × 107
A1/2T 3/2

i (eV)

Z4ni (cm−3)ln(�)
(1.13)
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ni (= ne/Z̄), Ti , and pi = nikBTi are the ion density, temperature and pressure,
respectively (note, Ti is in Kelvin and not in electronvolt unless specified other-
wise).�αβ is the ion viscosity stress tensor, ηvisc is the ion viscosity coefficient, A
is the ion mass expressed in proton mass, and τi i is the ion-ion collision time. To
obtain the equation of motion in cgs units, one replaces �j × �B by �j × �B/c, and
use ηvisc(poise) = 10 × ηvisc(Pa · s).

• Ion thermal energy equation:

∂

∂t

(
3

2
nikBTi

)
+ ∇ ·

(
3

2
nikBTi �v

)
=−pi∇ · �v − �αβ

∂vα

∂xβ
− ∇ · (κi∇Ti ) + Qie

(1.14)
where

κi = 3.9 · nik
2
BTi (K)τi i
Mi

≈ 0.1 · T 5/2
i (eV)

Z̄4A1/2ln(�)
(J · s−1 · K−1 · m−1) (1.15)

Qie = 3me

Mi
neνei kB(Te − Ti ) = (1.16)

= 7.9 × 10−22 · n
2
e(cm

−3)Z̄ ln(λ)

T 3/2
e (eV)

(Te(eV) − Ti (eV))(J · m−3 · s−1)

κi is the ions thermal conductivity coefficient (κi (erg· sec−1·K−1· cm−1)= 105 ×
κi (J· s−1· K−1· m−1), Qie is the heat acquired by the ions due to the collisions
with electrons (Qie(erg· cm−3·sec−1) = 10 × Qie(J· m−3·s−1) ). The 1st term at
the r.h.s of Eq.1.14 represents heating by adiabatic compression; the 2nd term
represents viscous heating; the 3rd term represents the ion heat conduction; and
the 4th term represents the heat transfer from electrons to ions.

• Electron thermal energy equation:

∂

∂t

(
3

2
nekBTi + niεx

)
+ ∇ ·

(
3

2
nekBTe�ve

)
+ ∇ · (niεx �v) =

= −pe∇ · �ve − ∇ ·
(
−κe∇Te − αqkBTe �j/e

)
− Qie + η j2 + �j · �RT

ene
− Wrad

(1.17)

with

κe = ακ
nek2BTe
meνei

= ακ0.85
T 5/2
e (eV)

Z̄ln(�)
(J · s−1 · K−1 · m−1) (1.18)

εx is the sum of the ionization and excitation energy per ion. This term is included
in the electron thermal energy equation since electrons loose (gain) their energy
through ionization (recombination) and excitation (de-excitation) of the ions. �ve ≈
�v − �j/(ene) is the electrons velocity, and �vrel = −�j/(ene) is the relative velocity
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Table 1.2 ακ and αq factors for different ionization stages

Z̄ 1 2 3 4 ∞
ακ 3.16 4.9 6.1 6.9 12.5

αq 0.71 0.9 1 1.1 1.5

of the electrons and ions. κe is the electrons thermal conductivity coefficient, ακ is
a factor that depends on Z̄ and is given in Table 1.2 for selected values of Z̄ . The
term αqkBTe �j/e (sometimes appears as αq pe �j/(ene) or αqnekBTe�vrel ) represents
the heat flux due to the electrical current. It originates from the v−3 dependence of
the Coulomb collision cross section on the electron velocity, therefore, the current
is mostly carried by the faster electrons. This leads to the heat flow in the rest
frame of the electrons in the direction opposite to the current (for more details see
[47]). The term η j2 represents resistive (Joule) heating by the electrical current,
�j · �RT /(ene) represents heating due to the thermal force, and Wrad represents
energy loss through radiation.

For the detailed derivations of the equations presented above and an extension of
these equations to the case when the plasma is magnetized, see [47]. For different
forms of the energy and momentum equations (1.10), (1.14), (1.17) that are useful
for understanding the energy partition (electromagnetic, thermal, kinetic) and energy
evolution in a Z-pinch see [35].

1.2.2 Ideal MHD Model

Applying and solving Eqs. 1.1–1.17 for the Z-pinch evolution even by using com-
puter simulations, is extremely difficult, since there are many physical processes that
has to be considered. These include resistive and adiabatic heating versus radiation
and heat conduction, magnetic field diffusion versus convection with plasma flow,
development of instabilities and turbulences, ionization dynamics, and more. Many
of these processes are coupled and therefore the solution has to be self-consistent.
Due to the complexity of the physics involved in the plasma implosion, reliable,
detailed experimental data is essential for the testing of different MHD codes.

Due to the high complexity of the physics involved, it is sometimes useful to
employ a simplified model that gives some insights into the Z-pinch dynamics. Such
simplified model makes use of the ideal MHD equations where collisional effects
between the plasma particles are neglected, consequently, the conductivity is infinite,
no radiation, no viscosity, and no interaction with the electrodes are considered. The
set of the ideal MHD equations is:

∂ρ

∂t
+ ∇ · ρ�v = 0, mass continuity (1.19)
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ρ
d �v
dt

= −∇ p + �j × �B, equation of motion (1.20)

∂ �B
∂t

= −∇ × �E, Faraday’s Law (1.21)

∇ × �B = μ0 �j, Ampere’s law (1.22)

�E + �v × �B = 0, Ohm’s law (1.23)

d

dt

(
p

ργ

)
= 0, equation of state (1.24)

where p = pe + pi—plasma pressure, γ—adiabatic constant (in plasmas usually
γ = 5/3).

This simplified set of equations allows for the study of Z-pinch dynamics by one-
dimensional (only radial dependence), self-similar solutions where the variables are
assumed to be separable functions of time and radius. Although these analytical
solutions don’t include some important physical processes, like the development
of instabilities, B-field diffusion, radiation and more, they still provide valuable
qualitative insight and guidance into the general Z-pinch dynamics and the relations
between the magnetic field, plasma, and flow parameters. Detailed discussion on the
applicability of ideal MHD equations to Z-pinch conditions, and on the different
types of self-similar solutions for ideal Z-pinch dynamics can be found in M. A.
Liberman’s et al., book ’Physics of high-density Z-pinch plasmas’ [37].

Another important analytical solution that can be derived using ideal MHD equa-
tions describes the Z-pinch plasma in force equilibrium and �v(r, t) = 0. This solution
considers the balance between the Lorentz forces due to the axial and azimuthal cur-
rent distribution jz(r) and jθ(r), respectively, and the thermal pressure gradient in
an infinite plasma cylinder. Using the equation of motion (Eq. 1.20) and Ampere’s
law (Eq.1.22), the equilibrium can be described by:

dp

dr
= − 1

2μ0

d

dr
(B2

z − B2
z0) − 1

2μ0r2
d

dr
(r2B2) (1.25)

This leads to the relation between the average pressure 〈p〉 inside the plasma column,
the total current I , the initial axial magnetic field Bz0, the initial plasma radius R0

(before the start of the compression), and the equilibrium plasma radius R:

〈p〉 ≡ 2π

πR2

∫ R

0
rp(r)dr = μ0 I

2

8π2R2 − 1

2μ0
B2
z0

(
〈B2

z 〉
B2
z0

− 1

)
= μ0 I

2

8π2R2 − 1

2μ0
B2
z0

(
α2 R

4
0

R4 − 1

)

(1.26)
i.e. the average plasma pressure is equal to the azimuthal magnetic pressure at the
outer radius of the plasma (B2(r = R)/(2μ0)) minus the average axial magnetic
pressure (〈B2

z 〉 is defined similarly to 〈p〉). α is the parameter varying in the range
R2/R2

0 < α < 1 that characterizes the confinement of the axial magnetic flux.
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The first theoretical study of a pinch in force equilibrium (without Bz) appeared in
Bennett’s paper [49] from1934,where he obtained a relation (today is called “Bennett
relation”) between the total axial current (I ), the number of ions per unit length along
the axis (N ), and TB (“Bennett temperature”) that is the mean temperature weighted
by density:

(1 + Z̄)NkbTB = μ0 I 2

8π
(1.27)

kbTB = 2π

N (1 + Z̄)

∫ R

0
rp(r)dr (1.28)

where p(r) is the plasma pressure (electron+ion), R is the outer radius of the plasma
column, and Z̄ is the average charge state. Assuming an isothermal pinch with equal
electron and ion temperatures, a more convenient form of the Bennett relation can
be used [37]:

T (keV) = 3.12(I/MA)2(1 + Z̄)−1(N/1018cm−1)−1 (1.29)

Note, Eqs. 1.26 and 1.27 are equivalent forms to describe the relation between plasma
and magnetic field parameters.

1.2.3 Snow-Plow Model

To estimate the evolution of the plasma implosion velocity, and the time and radius
of the stagnation as a function of Bz0, we use an even more simplified model called
“Snow-plow model” [35]. This is a 0D model, in which the current-carrying implod-
ing plasma is assumed to be an infinitely thin cylindrical shell. As the plasma shell
implodes, it sweeps up material to the velocity of the shell. This model doesn’t
include the thermal pressure term in the momentum equation, since the outward
force due to thermal pressure in our strongly radiating plasma is much smaller than
the Lorentz forces during the implosion stage. Here, we use the “Snow-plow” model
to describe the implosion of a plasma shell that in addition to sweeping material as
it implodes, it also compresses an axial magnetic field. The current evolution is then
described by the parameters of the pulsed-power generator coupled to the plasma
inductance evolution that is calculated using plasma dimensions evolution. Since the
plasma-shell has infinite conductivity, that implies conservation of the axial magnetic
flux within its radius. This leads to the following dependence of Bz(t) on the plasma
radius R(t): Bz(t) = Bz0

(
R2
0/R(t)2

)
, where R0 is the outer radius of the gas shell

(and the plasma radius at t = 0) and R(t) is the plasma radius at time t .
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The equation of motion for the plasma shell is:

for R(t) > Rin

d

dt

(
m(t)

dR

dt

)
= m0

π(R2
0 − R2

in)

d

dt

(
π(R2

0 − R(t)2)
dR

dt

)
=

= −μ0 I (t)2

4πR(t)
− B2

z0

μ0
πR(t)

(
1 − R4

0

R(t)4

)
, (1.30)

for R(t) < Rin

m0
d2R

dt2
= −μ0 I (t)2

4πR(t)
− B2

z0

μ0
πR(t)

(
1 − R4

0

R(t)4

)
, (1.31)

where m0(kg/m) is the total line-mass (gas-shell mass divided by the shell length),
m(t) is the imploding line-mass at time t , Rin is the inner radius of the gas shell,
and I (t) is the plasma current at time t . The first term on the right hand side of the
equations represents the inward force exerted on the plasma shell by the Bθ pressure.
The second term represents the outward force exerted by the Bz pressure. The term
m0/(π(R2

0 − R2
in)) represents the initial mass density per length. It is assumed to

be uniform and non-zero in the range Rin < R < R0 and zero otherwise. Note, in
order to include also thermal pressure force in the equation of motion, the terms
kBT (Z + 1)m(t)/Mion/R(t) and kBT (Z + 1)m0/Mion/R(t) has to be added in the
r.h.s. of Eqs. 1.30 and 1.31, respectively (Mion is the ion mass).

The current evolution is calculated by:

d2

dt2
(Ltotal · I ) + RPPS · d I

dt
− I

C
= 0, (1.32)

whereC and RPPS are, respectively, the capacitance and resistanceof the pulse-power
system (according to the model, the plasma resistance is zero). Ltotal = LPPS +
L plasma , where LPPS is the inductance of the pulse-power machine without plasma
and L plasma is the inductance of the plasma column given by:

L plasma = μ0l

2π
ln

(
Rreturn

R(t)

)
(1.33)

where l is the length of the plasma column and Rreturn is the return current radius.
To demonstrate the effects of an axial magnetic field on the plasma implosion

with typical discharge parameters and initial conditions, several calculations of the
R(t), Bz(t) and Bθ(t) are presented in Figs. 1.3, 1.4, 1.5, 1.6 and 1.7. The discharge
parameters and initial conditions used in the calculations are given in Table 1.3.
Stagnation is defined as the timewhen the plasma radius reaches itsminimum.At this
timewe expect themaximumcompression of Bz . Table 1.4 summarizes the calculated
values of the stagnation time and the corresponding plasma radius, the maximum Bz
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Fig. 1.3 Calculated plasma radius evolution R(t) for m0,Ar = 30 µg/cm for four different Bz0.
The insert highlights the plasma radius evolution for different Bz0 at times close to the stagnation

Fig. 1.4 Plasma radius evolution R(t) calculated for two different mass-loads per length m0,Ar =
30 µg/cm and m0,Ar = 10 µg/cm, and for Bz0 = 0 and Bz0 = 0.4 T

(i.e Bz at stagnation), and Bθ at stagnation for different initial conditions. Figure1.3
presents the results of the plasma radius calculations form0,Ar = 30 µg/cm and four
different Bz0. It is seen that in the range of Bz0 ≤ 0.4T, used in the present experiment,
the effect of Bz on the plasma radius evolution during compression is expected to be
significant only at the late stages of the compression (see insert in Fig. 1.3), whereas
the times of stagnation differ by <3% between the lowest and highest Bz0. We note
that the calculation for implosion without Bz proceeds until R = 0 and is terminated
from this point, whereas for Bz0 > 0 the plasma radius increases after the stagnation
due to the plasma inertia effect, explained below.

Figure1.4 compares the plasma radius evolution between the implosions with
two different initial gas-shell masses per length m0,Ar = 30 µg/cm and m0,Ar =
10 µg/cm, for Bz = 0 and Bz = 0.4 T. We see that 3× increase of m0,Ar delays
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Fig. 1.5 Calculated Bθ and Bz evolution for m0,Ar = 30 µg/cm and Bz0 = 0.4 T

Fig. 1.6 Calculated Bθ and Bz evolution for m0,Ar = 30 µg/cm and Bz0 = 0.1 T

Fig. 1.7 Calculated Bθ and Bz evolution for m0,Ar = 10 µg/cm and Bz0 = 0.4 T
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Table 1.3 Initial conditions and discharge parameters

Parameter Value Description

Bz0 0, 0.1, 0.2, 0.4 T Initial axial magnetic field

R0 19 mm Outer radius of the initial gas distribution

Rin 7 mm Inner radius of the initial gas distribution

m0 10, 30 µg/cm Gas-shell mass divided by the shell length

V0 23 kV Initial voltage of the capacitors

C 16 µF Pulse-power system capacitance

LPPS 55 nH Pulse-power system inductance

RPPS 15 m� Pulse-power system resistance

Rreturn 125 mm Return current radius

Table 1.4 Summary of the theoretical calculations of Bz compression for different initial condi-
tions: (1) mass per length of argon gas-shell, (2) initial axial B-field, (3) time of stagnation, (4)
radius of stagnation, (5) Bz at stagnation, (6) compression factor of Bz , (7) Bθ at stagnation

m0,Ar
µg/cm

Bz0
T

tstagnation
ns

Rstagnation
mm

Bz,stagnation
T

Bz,stagnation
Bz0

Bθ,stagnation
T

10 0 651

10 0.4 679 2.1 32.5 81 17.5

30 0 874

30 0.1 877 0.3 388 3880 132

30 0.2 882 0.7 153 765 61.5

30 0.4 899 1.6 57 142 28

the stagnation time by ∼30% and decreases the stagnation radius (relevant only for
implosions with Bz) by ∼25%. Figures1.5 and 1.6 present Bθ and Bz evolution for
Bz0 = 0.1 T and Bz0 = 0.4 T. The assumed argon mass-load per length is m0,Ar =
30 µg/cm. In both figures, Bz becomes larger than the compressing Bθ at times
close to stagnation. This phenomenon is expected since the plasma shell has non
zero velocity, when the magnetic pressure due to Bz becomes equal to the magnetic
pressure due to Bθ. Therefore, its inertia continues to compress the Bz-field, resulting
in Bz > Bθ. Another effect seen in these two figures is that for lower Bz0, Bz,stagnation

is larger. This can be explained by two factors. The first is the significant increase of
Bθ pressure close to stagnation for lower Bz0 since the plasma radius reaches smaller
values before the Bz pressure stops the acceleration. The second factor is the larger
inertia gained by the plasma-shell since the Bz pressure acting outward is smaller for
lower Bz0 during most of the implosion stage.

Figure1.7 presents the evolution of Bz and Bθ for Bz0 = 0.4 T and m0,Ar =
10 µg/cm. Comparing the Bz,stagnation in Figs. 1.7 and 1.5, which have the same Bz0,
but differentm0,Ar , we see that Bz,stagnation is larger for higherm0,Ar . This effect is due
to the higher inertia acquired by the plasma shell of larger mass and stronger Bθ close
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to the stagnation due to the rising electric current (implosion time is longer for larger
m0,Ar ). Bz,stagnation rises with m0,Ar as long as the time of stagnation is smaller than
the rise time of the current. Therefore, for given parameters of a pulse-power system
and Bz0, one can find an optimal m0,Ar to achieve maximum possible Bz,stagnation .
For example, for the discharge parameters presented above and Bz0 = 0.4 T, the
optimal mass-load per length ism0,Ar � 200 µg/cm. Thism0,Ar is much bigger than
the one used in the experiment, because of the reasons to be addressed in Chap.4.

We emphasize that in the model used here, two important physical processes are
omitted. The first process is the thermal pressure, which plays an important role at
times close to the stagnation for implosions without initial Bz or relatively small Bz0.
For example, Bz,stagnation in implosion with Bz0 = 0.1 T (see Fig. 1.6) will not reach
the high value of 388 T calculated by the present model because the thermal pressure
(here neglected) will stop the compression already at a larger radius. The second
process neglected here is the diffusion (outward) of the Bz-flux that can significantly
effect the peak Bz at stagnation. In Chap.4 the results of the present theoretical
calculations will be compared to the measured R(t), Bz(t), and Bθ(t).

1.3 Spectroscopic Diagnostics of Plasma

In the present work, we employ emission spectroscopy for the determination of the
temporal and spatial evolution of the magnetic fields (axial and azimuthal B-fields),
and the plasma parameters (electron density and temperature). Spectroscopy is a non-
intrusivemethod for plasmadiagnostics that analyses radiation emitted by the plasma.
Spectroscopic data contain very rich information that is useful for determination of
plasma and electromagnetic fields properties. In the following,we present features
and phenomena in the emitted radiation that are used for obtaining the information:

• Doppler shift. Doppler shift of spectral line appears due to the relative motion
of the radiating atoms (ions) towards (or away from) the observer. Measurements
of Doppler shift allow for the determination of plasma velocities using: �v · n̂ ≈
c · �λDoppler/λ0 for v �c (n̂ is the unit vector from the radiator to the observer,
�λDoppler = λmeasured − λ0 is theDoppler shift of themeasured spectral line-peak
relative to the line-peak (λ0) of a radiator at rest).

• Doppler broadening. Doppler broadening of spectral lines appears due to radi-
ator’s velocity distribution observed in the probed plasma volume or during the
detection time (i.e., the resultant broadening of the line is due to the superposition
of many single-ion emissions that have different Doppler shifts). Measurement of
the Doppler broadening allows for the determination of the ion temperature (Ti )
or the hydrodynamic ion velocity distribution in turbulent plasmas. If the Doppler
broadening results from the ion temperature, the spectral line-profile will have
a Gaussian profile with full width at half maximum FWHMGaussian given by:
Ti (eV) = 1.7 × 108 · A (FWHMGaussian/λ0)

2 (A is the ion mass in atomic mass
unit).
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• Zeeman effect. Zeeman splitting of the spectral line appears due to the energy
splitting of atomic levels in the presence of a magnetic field. Measurement of
Zeeman splitting allows for the determination of the magnetic field in plasma. For
a crude estimate of the energy shift of the atomic state due to the Zeeman effect one
can use �E ∼ μB B (μB is the Bohr magneton). For a more detailed description
of the Zeeman effect see Sect. 1.3.2.

• Stark effect. Stark splitting of a spectral line appears due to the energy split-
ting of atomic levels in the presence of an electric field. Line splitting due to the
Stark effect is used for the determination of “macroscopic and static” (relatively
to the plasma volume and time of observation) electric fields. For hydrogen-like
ions the energy shift is linearly proportional to the magnitude of the electric field,
| �E |≡ F , (linear Stark effect). The maximum separation between the quantum
states belonging to an energy level with principal quantum number np is given by:
�Emax (eV) = 3ea0Fnp(np − 1)/Z ≈ 1.6 × 10−5F(kV/cm)n(n − 1)/Z (equiv-
alently, �Emax (cm−1) ≈ 0.13F(kV/cm)np(np − 1)/Z ), a0 is the Bohr radius.
For non hydrogen-like ions the energy shift is quadratic in | �E | (quadratic Stark
effect), and for an atomic quantum state |φi 〉 with unperturbed energy Ei is given
by:

�Ei =
∑
k �=i

| 〈φk |eFr cos θφi |2
Ei − Ek

(1.34)

Note, the atomic quantum state |φ〉 is defined by the principal quantum number
np, total orbital angular momentum L , total spin S, total angular momentum J ,
and projection of J on the ẑ-axis, mJ .
To estimate the energy shift using Eq.1.34, it is enough to include in the sum
only few quantum states with closest energies for which the electric dipole matrix
element is not zero (i.e., 〈φk |er |φi 〉 �= 0). The values of the matrix elements in
Eq.1.34 can be obtained using the Einstein coefficients between the states (a con-
venient source for the Einstein coefficients is the on-line atomic database of NIST
[50]). For a more elaborate discussion on the Stark effect see the book of H. A.
Bethe and E. E. Salpeter ’Quantum mechanics of one- and two-electron atoms’
[51].

• Stark broadening. Stark broadening of a spectral lines appears due to fluctuating
electric microfields acting on the radiating ion. These microfields are generated
by the moving surrounding electrons and ions. For isolated spectral lines of non
hydrogen-like ions, the main contribution to the Stark broadening comes from the
electric fields generated by electrons. This broadening results in a line-profile of
Lorentzian distribution with FWHMLorentzian that is linearly proportional to the
electron density, FWHMLorentzian = γ(Te) · ne. Usually, the Te-dependence of
the FWHMLorentzian , through the proportionality constant γ, is small in compar-
ison to the ne-dependence. Therefore, Stark broadening of spectral lines is used
for electron density determination. Note, the Stark broadening of a line is usually
accompanied by a Stark shift of the line-center due to the level repulsion effect,
as can be seen in Eq.1.34, if Ek > Ei then contribution of the state |φk〉 to �Ei is
negative and vice versa, meaning that the interacting states repel each other. Since,
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the net energy shift of an atomic level due to the level repulsion effect can be either
to higher or lower energies, the Stark shift can be either negative or positive. An
additional discussion on the Stark broadening effect and its use for ne determina-
tion see Sect. 1.3.1. Much more extensive discussion on this subject can be found
in the book of Griem ‘Principles of plasma spectroscopy’ [52].

• Line intensity. The intensity of a spectral line due to spontaneous emission transi-
tion between two atomic levels with upper and lower energies Eu and El , respec-
tively, is given by:

I (erg/s/cm3) = hνni (cm
−3)PZ (ne, Te)PZ ,u(ne, Te)Aul (1.35)

h is the Planck constant in erg·s, ν is the transition frequency, ni = ne/Z̄ is the
total ion density, PZ is the probability for an ion to be in charge state Z , PZ ,u is
the probability of ion of charge Z to be in excited atomic level Eu , and Aul is
the Einstein coefficient for spontaneous transition from the quantum state of the
atomic level Eu to the atomic level El . Note, in LS coupling approximation, the
atomic level is defined by the quantumnumbers n, L , S, J with a degeneracy given
by g = 2J + 1, while quantum state is not degenerate and is defined by quantum
numbers n, L , S, J,mJ .
Since the line intensity is a function of electron density and temperature, it can be
used for the determination of the plasma parameters. Usually, it is highly useful
to look at the intensity ratios of different spectral line-pairs instead of the abso-
lute intensity of each line, since some of the line-intensity ratios have dominant
dependence only on a single parameter, ne or Te, for a relevant range of plasma
conditions. In addition, the use of the intensity ratio allows to avoid the relatively
complicated process of absolute calibration of the spectroscopic system.
For example, in relatively dense plasmas, such that the electron excitation and
de-excitation processes are dominant over the radiative processes (plasma is close
to local thermodynamic equilibrium (LTE)), PZ ,u(ne, Te) can be approximated
using the Boltzmann distribution:

PZ ,u(ne, Te) = N guexp(−Eu/kBTe) (1.36)

and PZ (ne, Te) can be approximated using Saha equation:

nZ+1ne
nZ

= PZ+1ne
PZ

= (2πmekBTe)3/2

h3
2gZ+1

gZ
exp(−χ/kBTe) (1.37)

N is the normalization constant (1/partition function), gu is the statistical weight
(degeneracy) of the atomic level Eu , nZ = ni PZ is the density of ions of charge
state Z , gz is the statistical weight of the ground state of the ion with charge Z , χ is
the ionization energy from the ground state of the ion of charge state Z . As can be
seen from Eq.1.36, in LTE plasmas the intensity ratio of spectral lines belonging
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to the same ion charge state depends only on Te, therefore, it can be used for Te
diagnostics:

ratio = IA
IB

= hνA

hνB

AuAlA

AuBlB

guA

guB

exp

(
− (EuA − EuB )

kBTe

)
(1.38)

By knowing Te and measuring intensities of lines belonging to different ion charge
states, Saha equation (1.37) can be used for ne determination.
It is important to note that the presented discussion on the use of line intensities
for plasma parameters determination assumes optically thin plasma (i.e. photon
absorption is negligible). However, it is not always the case in Z-pinch plasmas,
and depends very much on the selected lines (e.g., transitions to the ground state
are usually optically thick), since opacity affects the escaping emission from the
plasma it must be calculated for each line. More details regarding opacity calcu-
lation and how it affects the line-profile and intensity, is given at the end of the
current section.
Note also, that in the above discussion, the probabilities PZ and PZ ,u are assumed
to be in steady state, therefore, they are functions of ne and Te only. However,
in transient plasma case (relevant for all pulsed power experiments), the rate at
which the plasma parameters changes might be faster than the time to reach steady
state. In such case, the line intensity depends not only on ne and Te but also on
the time history of these parameters. In order to find the true evolution of ne and
Te it is necessary to fit the time evolution of different line intensities by varying
the time history of ne(t) and Te(t) and using time-dependent collisional-radiative
simulations [53]. Such analysis is rarely used in high-density plasmas typical for
Z-pinches, due to the difficulty in obtaining reliable time history of the line-
intensity (or line-profile) and large parametric space for ne and Te time-history
that results in relatively large error-bars of the plasma parameters determination.
For a more detailed discussion on the atomic processes in plasmas see the book
of Salzman ‘Atomic physics in hot plasmas’ [54].

• Continuum radiation. Continuum radiation in plasma is emitted due to two
processes:
(i) Scattering of free electrons by ions, where the electrons emit radiation during
their acceleration in the electric field of ions. This process is called free-free or
Bremsstrahlung radiation. For thermal electrons in a field of ions of charge state
Z , the emitting power spectrum per unit volume is given by:

ε f f (J/s/m3/Hz) = Z2e6

6π2ε30m
2
ec

3

(
2πme

3kBTe

)1/2

neni exp(−hν/kBTe) · ḡ f f (ν) =
= 6.8 × 10−51Z2ne(m

−3)ni (m
−3)T−1/2

e (K) exp(−hν/kBTe) · ḡ f f (ν) (1.39)
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in cgs units this is:

ε f f (erg/s/cm3/Hz) = 32πZ2e6

3m2
ec

3

(
2πme

3kBTe

)1/2

neni exp(−hν/kBTe) · ḡ f f (ν) =
= 6.8 × 10−38Z2ne(cm

−3)ni (cm
−3)T−1/2

e (K) exp(−hν/kBTe)ḡ f f (ν) =
= 6.3 × 10−40Z2ne(cm

−3)ni (cm
−3)T−1/2

e (eV) exp(−hν(eV)/Te) · ḡ f f (ν)

(1.40)

and the total emitted power per unit volume is:

P f f (erg/s/cm3) = 1.5 × 10−25 · Z2ne(cm
−3)ni (cm

−3)T 1/2
e (eV)Ḡ f f (1.41)

ḡ f f and Ḡ f f are the velocity and velocity+frequency averaged Gaunt factor,
respectively.TheGaunt factor accounts for a quantumcorrections toEqs. 1.39–1.41
which have been derived using classical physics. For the relevant plasma param-
eters and photon energies these two factors are in the range 1 ≤ ḡ f f , Ḡ f f ≤ 2
(see [55]).
For typical ne and Te of Z-pinch plasmas, low-Z plasmas (like hydrogen and
helium) are almost fully ionized and therefore most of the energy is emitted by the
Bremsstrahlung radiation. In the case of high-Z plasmas the ions still posses many
bound electrons and therefore most of the radiation energy is in line spectrum.
(ii) Capture of free electrons by an ions through emission of a photon: Eph =
Eelec − Ebound , Eelec and Ebound are the photon energy, free electron kinetic energy
and bound atomic state energy, respectively. This process is called radiative recom-
bination or free-bound radiation. Calculation of the power spectrum due to the
radiative recombination is significantlymore involved than for the Bremsstrahlung
radiation, since it has to be done separately for each bound atomic state to which
the free electrons are recombining. The approximated expression for the emitting
power spectrum per unit volume due the radiative recombination to a bound state
(with (np, L) quantum numbers) of ion with charge Z , is give by [54]:

ε f b(eV/s/cm3/eV) = 64
√

π

3
√
3

e4

m2
ec

3

1

n3p

(
EZ−1,np,L

kBTe

)3/2

ZneNZ (1.42)

× exp(−hν/kBTe)(1 − PZ ,np,L) for hν > EZ−1,np,L

EZ−1,np,L is the bound energy of |np, L〉 atomic state of ion with Z − 1 charge
state, PZ ,np,L is the population probability of the |np, L〉 atomic state in ion with
charge state Z , NZ is the particle density of ions with charge state Z .
Continuum radiation can be used for the determination of both, ne and Te. For
example, in plasmas for which a wide spectral range of the continuum spec-
trum (ε f f (ν)) can be measured accurately, Te can be calculated from the slope
of the linear fit to ln(ε f f (ν)) versus ν plot. Subsequently, ne can be determined by
measuring the absolute continuum emission intensity within some spectral range,
and using Eq.1.39. It is important to note that for an accurate determination of ne,
Z̄ should be known.



22 1 Introduction

We now discuss two issues that might complicate the spectroscopic data analysis
and may lead to large errors in the determination of plasma and electromagnetic
fields properties if not treated properly. The first is the re-absorption of photons in
the plasma (opacity effect). The second is the spectrum that contains emission from
plasmas of very different properties, either due to the integration along line-of-sight
or due to the low spatial or temporal resolutions.

(i) Optical thickness of lines. Here, we discuss only optical thickness of spectral
lines, since for the relevant plasma parameters the absorption of continuum is
negligible. The optical thickness τ (ν) is a dimensionless parameter defined by:

τ (ν) =
∫ s2

s1

αabs(ν, s)ds (1.43)

whereαabs(ν, s) is the absorption coefficient (1/mean-free path) of a photonwith
frequency ν, and the integration is along the line-of-sight inside the plasma.

The calculation of the optical thickness for the spectral lines used for the diag-
nostics is important, since τ (ν) effects both, the measured intensity of the lines and
their profiles. Usually, the optical thickness is calculated at the peak of the spectral
line assuming uniform plasma of characteristic length L pl :

τ0,lu = 1

8π
λ2 gu

gl
Aulnl

(
1 − glnu

gunl

)
φul(ν = ν0)L pl = (1.44)

= 0.0265 · flunl(cm
−3)

(
1 − glnu

gunl

)
φul(ν = ν0)L pl(cm)

λ(cm) is the wavelength of the spectral line, nu(cm−3) = ni PZ PZ ,l and nl(cm−3) =
ni PZ PZ ,l are the densities of the upper and lower atomic levels, respectively,φul(ν =
ν0) is the value of the line intensity distribution (i.e line-profile normalized to unit
area) at the line-peak, flu is the absorption oscillator strength:

flu = mec

8πe2
λ2(cm)

gu

gl
Aul = 1.5 · λ2(cm)

gu

gl
Aul cgs units (1.45)

In many cases it is reasonable to make the approximation: 1 − glnu/guni ≈ 1.
Using this approximation and Eq.1.44, convenient formulas for estimation of τ0,lu
can be derived:

τG
0,lu ≈ 8.3 × 10−21 · nl(cm−3) flu

λ2(Å)

�λG(Å)
L pl(cm) for Gaussian line-profile

(1.46)

τ L
0,lu ≈ 5.63 × 10−21 · nl(cm−3) flu

λ2(Å)

�λL(Å)
L pl(cm) for Lorentzian line-profile

(1.47)
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�λG(Å) and �λL(Å) are the full width at half maximum of the Gaussian and
Lorentzian distributions, respectively. A spectral line is called optically thick if
τ0,lu > 1 and optically thin if τ0,lu < 1.

The effect of opacity on the spectral line-profile and intensity is given by:

φul (ν) = 1

L pl

∫ L pl

0
φ0,ul (ν)exp

(
− τ0,lu

L pl
φ0,ul (ν)s

)
ds = 1

τ0,lu
(1 − exp(−τ0,luφ0,ul (ν)))

(1.48)
φ0,ul is the line-profile without opacity effect (i.e., for τ0,lu = 0) normalized to
φ0,ul(ν = ν0) = 1. It is important to note that opacity affects the line intensity by
two processes. The first is a change of the level populations due to resonance photo-
absorption or photoionization, and the second is a reduction of the line-intensity due
to the absorption of the photons along the line-of-sight. Usually, for plasma parame-
ters relevant to Z-pinches, it is enough to consider only the second process (as done
by Eq.1.48), since the first process has a negligible effect on the line-intensity due to
the high electron deexcitation rate (relative to the radiative decay rate) of the upper
level.

(ii) Spectrum containing emission from regions with different plasma prop-
erties. Figure1.8 presents a schematic description of the basic elements of an
imaging setup that contains a source (plasma), imaging optics (lens, mirror), and
a detector (camera, photodiode, photomultiplier, etc). The enlarged part of the
optical setup presents a cross section of the light-collection cone in a plasma.
For a given plasma source, the volume of the light-collection cone is determined
by the working f -number and the diffraction limit or detector size (pixel size
in a camera, optical fiber diameter, or photodiode size). In general, the diameter
of this cone at the outer edge of the plasma (in the direction perpendicular to
the line-of-sight) determines the spatial resolution of the imaging setup since an
radiator emitting within the plasma volume defined by this cone will contribute
to the signal measured by the elementary detection cell (e.g. camera pixel, single

Fig. 1.8 Schematic description of a basic elements of an imaging setup. Enlarged image shows the
light collection cone in a plasma
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photodiode). If the spatial resolution dres is smaller than the scale over which
the plasma parameters change significantly (for example 1

ne
dne
dx · dres � 1), then

the spectrum will contain emissions from plasmas with significantly different
properties. Such integrated spectrum causes complications in the analysis of the
line-profiles and line-intensities. A good example of the effect of the spatial inte-
gration on the line-profiles is discussed in [56]. Similarly, if the time-resolution
of the measurements is lower than the rate of the change of the plasma parame-
ters then the time-integrated spectrum will contain emissions from significantly
different plasmas. A good example of the effect of the temporal integration on
the line-profiles is discussed in [57]. In addition to the spatial integration per-
pendicular to the line-of-sight due to the finite optical resolution, there is spatial
integration along line-of-sight, as can be seen in Fig. 1.8. However, for plasmas
possessing cylindrical symmetry, it is possible to obtain information on the radial
distributions from the line-integrated data by applying inverse Abel transform to
the spectral images [58, 59]. Otherwise, a local doping by atomic species differ-
ent from the surrounding plasma can be very useful to obtain local information
without the complication arising due to the integration along line-of-sight, as
was done in [60, 61].

We emphasize that in the present work, much effort is invested in the simulta-
neous determination of the various parameters, either by finding spectral regions,
or even specific transitions that their analysis provide such information. For exam-
ple, a Zeeman split pattern that gives the magnetic field, whereas the width of each
Zeeman component gives the electron density, as was done in [56]. The simultane-
ous measurement of the plasma and magnetic field parameters is very important in
such pulsed power experiments due to the irreproducibility in the Z-pinch evolution
as a result of the development of different instabilities during the implosion and
stagnation. The details of the specific transitions utilized for each measurement are
presented in the following sections.

1.3.1 Determination of Plasma Parameters

Determination of the distribution and evolution of the electron density and tem-
perature is essential for the calculation of the different plasma properties (thermal
pressure, electrical conductivity, plasma frequency, etc.) and for understanding the
physical processes occurring in Z pinches. Here, ne is determined from Stark broad-
ening of Ar III (4S)4s 5S2 − (4S)4p 5P2 transition at λ = 3302 Å, Ar III (2D)4s 3

D3 − (2D)4p 3P2 transition atλ = 2884Å, andAr IV (3P)4s 2P3/2 − (3P)4p 2D5/2

transition at λ = 2913 Å. For the relevant ne range (5 × 1017 − 3 × 1018 cm−3) at
Te ≈ 4 eV, these lines are isolated and their profile is dominated by the Lorentzian
distribution due to the Stark broadening. The calculated Stark broadening of these
transitions for Te ≈ 4 eV is [62–65]:
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Table 1.5 Optical thickness of Ar III (4S)4s 5S2 − (4S)4p 5P2 transition at λ = 3302 Å, Ar III
(2D)4s 3D3 − (2D)4p 3P2 transition at λ = 2884 Å, and Ar IV (3P)4s 2P3/2 − (3P)4p 2D5/2

transition at λ = 2913 Å, for different ne and Te, and for plasma length = 0.5 cm

ne (cm−3)

Te (eV)
1017

4
1017

5
1018

4
1018

5
5 × 1018

4
5 × 1018

5

λ = 2884 Å 0.09 0.04 0.4 0.16 0.94 0.56

λ = 3302 Å 0.2 0.09 0.88 0.3 1.9 1

λ = 2913 Å 0.09 0.33 0.2 1 0.13 1.1

�λ3302
Stark(Å) = 1.4 × 10−18 · ne(cm−3) (1.49)

�λ2884
Stark(Å) = 1.1 × 10−18 · ne(cm−3) (1.50)

�λ2913
Stark(Å) = 0.7 × 10−18 · ne(cm−3) (1.51)

�λStark is the full width at half maximum of the Lorentzian distribution.We note that
the uncertainty of the proportionality constant γ for the above transitions is ∼40%
and the values given in Eqs. 1.49–1.51 are the mean of the values found in [62–65].

Table 1.5 gives the calculated τ0,lu using Eq.1.44 for the discussed above transi-
tions in the relevant plasma parameters. nl and nu were calculated using collisional-
radiative (CR) model assuming steady state using the code NOMAD [53], flu values
are taken from the NIST online database [50], Stark broadening for each line is
calculated using Eqs. 1.49–1.51, and the plasma length is twice the width of the
plasma-shell observed in the experiments, based on spectral images. It is seen from
Table 1.5 that formost of the considered plasma parameters τ0,lu ≤ 1, i.e. the lines are
optically thin. However, using Eq.1.48 it can be shown that in the case of τ0,lu = 1,
Lorentzian line-profile is broadened by ∼30%. Therefore, for some relevant plasma
parameters, the opacity broadening should be considered when the Stark broadening
is used for ne determination.

In the present work, the electron temperature diagnostics is based on line-intensity
ratios. We use the ratio of two Ar III lines, (4S)4s 5S2 − (4S)4p 5P2 transition at
λ = 3311Å and (2D)4s 3D3 − (2D)4p 3F1 transition atλ = 3336Åwhich are close
in wavelength and can be detected simultaneously by the same spectrometer. The
advantages of using the intensity ratios of transitions belonging to the same ion are
fast establishment of a steady state ratio (<1ns, for the typical plasma parameters of
the experiment) and weak ne sensitivity. Figure1.9 shows the line-intensity ratio as a
function of time for three different electron densities, ne = 1017, 1018 and 5 × 1018

cm−3. The ratios are calculated using population probabilities of the atomic levels
obtained by the CR code NOMAD [53], and the Einstein coefficients taken from
the NIST online database [50]. In the figure, stars represent line-intensity ratio for
plasma in LTE, i.e. they are obtained using Eq.1.38. It can be seen from Fig. 1.9
that already for ne = 1017 cm−3 the ratios obtained in CR steady state are close to
the ratios in LTE, making these lines a good choice for Te determination also when
detailed CR code is unavailable.
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Fig. 1.9 Intensity ratio of Ar
III (4S)4s 5S2 − (4S)4p 5P2
transition at λ = 3311 Å to
Ar III
(2D)4s 3D3 − (2D)4p 3F4
transition at λ = 3336 Å as a
function of Te for different
ne. The black starts show the
intensity ratio for plasma in
local thermodynamic
equilibrium (i.e Boltzmann
distribution for atomic levels
population of Ar III ion)

We also use line-intensity ratio of transitions belonging to different ionization
states. The advantage of this method is a high sensitivity to Te. Here, we employ Ar
III (2D)4s 3D3 − (2D)4p 3P2 transition at λ = 2884 Å, and Ar IV (3P)4s 2P3/2 −
(3P)4p 2D5/2 transition at λ = 2913 Å for the Te determination of plasma filaments
that form during the implosion (see Sect. 3.3.2). Figure1.10 shows the line-intensity
ratio as a function of electron temperature for three different electron densities, ne =
1017, 1018 and 5 × 1018 cm−3. Also here, the ratios are calculated using population
probabilities of the atomic levels obtained by NOMAD [53], where the Einstein
coefficients are taken from the NIST online database [50]. It is seen from Fig. 1.10
that the ratio is very sensitive to Te, but also has non negligible dependence on ne.
However, since here the ne is determined employing Stark broadening, also line-
pairs that are sensitive to ne can be used. In Fig. 1.10 the solid and hollow symbols
represent line-intensity ratios for CR steady state and LTE, respectively. We see
here that for the selected transitions, LTE ratio can be used for ne > 1018 cm−3 by
applying Eqs. 1.36 and 1.37.

Important point that has to be consideredwhen the line-ratio of transitions belong-
ing to different ion charge states are used is the time required to establish steady state.
Figure1.11 shows the line-intensity ratio of Ar III (2D)4s 3D3 − (2D)4p 3P2 transi-
tion at λ = 2884 Å to Ar IV (3P)4s 2P3/2 − (3P)4p 2D5/2 transition at λ = 2913 Å
as a function of time for the typical plasma parameters in the present experiment. The
evolution of this ratio is calculated using CR code NOMADwith the initial condition
that all the ions are Ar III and in the ground state. It is seen from Fig. 1.11 that the
CR steady state is reached on the time scales of ∼20ns and ∼70ns for ne = 1018

cm−3, Te = 5 eV and ne = 1018 cm−3, Te = 4 eV, respectively. Since, the plasma
implosion occurs on the time-scale of ∼1µs the line-ratio in CR steady state of Ar
III transition at λ = 2884 Å and Ar IV transition at λ = 2913 Å can be used.
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Fig. 1.10 Intensity ratio of Ar III (2D)4s 3D3 − (2D)4p 3P2 transition at λ = 2884 Å to Ar IV
(3P)4s 2P3/2 − (3P)4p 2D5/2 transition at λ = 2913 Å as a function of Te for different ne. The
filled squares, circles, and triangles show the intensity ratio for plasma in collisional-radiative steady
state, while the hollow squares, circles, and triangles show the intensity ratio for plasma in local
thermodynamic equilibrium

Fig. 1.11 Line-intensity ratio of Ar III (2D)4s 3D3 − (2D)4p 3P2 transition at λ = 2884 Å to Ar
IV (3P)4s 2P3/2 − (3P)4p 2D5/2 transition at λ = 2913 Å as a function of time for ne = 1018

cm−3 and Te = 4 and 5 eV. The initial condition is all the ions at t = 0 are in the ground state of
Ar III. The dashed blue line represents the intensity ratio for plasma in collisional-radiative steady
state
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1.3.2 Determination of Magnetic Field

In the present study, Zeeman effect is used to measure magnetic fields in the plasma.
The Zeeman effect results in the splitting of atomic or ionic degenerate energy levels
due to the interaction with an external magnetic field. If the energy shifts due to the
Zeeman effect are small in comparison to the spin-orbit interaction (this condition
is satisfied in all of our measurements) then the energy splitting of the considered
atomic (or ionic) level is calculated using the approximation:

�E = gLSJμBmB, (1.52)

where m is the projection of the total angular momentum J of the given state along
the direction of the magnetic field B, μB is the Bohr magneton, and gLSJ is the Lande
g-factor, given by:

gLSJ = 1 + J (J + 1) + S(S + 1) − L(L − 1)

2J (J + 1)
, (1.53)

where S and L are, respectively, the total spin and the orbital angular momentum
of the radiator. The relative intensities of the various Zeeman components for a
transition between levels with total angular momentum J and J ′ are given by the
Wigner 3-j symbols (see for example [66]):

I ∼
(

J 1 J ′
−m m − m ′ m ′

)2

(1.54)

For relatively simple atomic configurations, like single optical electron above a
filled atomic shell, the calculation of the exact Zeeman-split pattern is performed by
diagonalizing the following Hamiltonian:

H = H0 + ξ �L · �S + (Lz + 2Sz)μB B (1.55)

consisting of the zero-order Hamiltonian, the LS interaction term, and the magnetic
field interaction term, respectively. Lz and Sz are, respectively, the projection of
the total orbital angular momentum L and total spin S of the given state along the
direction of the magnetic field B. The coefficient ξ is found using published energy
levels ([50]).

An example of the B-field induced energy splitting of the Al III 4s 2S1/2 and
4p 2P1/2 atomic levels is presented in Fig. 1.12. The transition between these two
atomic levels was used in the present work for axial magnetic field (Bz) deter-
mination. The arrows show the electric dipole allowed transitions between states
with different m values. The red arrows correspond to the transitions with �m =
mupper − mlower = 0, the blue arrows correspond to the transitions with �m = ±1.
Figure1.13 shows the simulation of the Al III 4s 2S1/2 − 4p 2P3/2 transition line
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Fig. 1.12 Energy diagram of the Al III 4s 2S1/2 − 4p 2P1/2 transition in the presence of a magnetic
field. The dashed arrow represents the unperturbed transition

Fig. 1.13 The simulated Al III 4s 2S1/2 − 4p 2P1/2 Zeeman-split transitions for B = 4 T. The
black dashed line represents the spectral line position without the external magnetic field. Line of
sight is perpendicular to the B-field direction

splitting due to the Zeeman effect for B = 4 T and line of sight perpendicular to the
B-field direction. In relatively dense plasmas (ne > 1017 cm−3), the measurement of
a magnetic field in the range of a few Tesla, using the Zeeman effect is challenging
due to the large Stark broadening of the transition line that smears out the split pattern
(see Fig. 1.14). Stark broadening of lineshape arises from fluctuating electric fields
at the radiator location, generated by the moving plasma charged particles (electrons
and ions). For non-hydrogenlike ions and isolated transitions, the Stark broadening
is proportional to ne and has a Lorentzian shape. Figure1.14 demonstrates the effect
of an electron density of ne = 5 × 1017 cm−3 on the Zeeman pattern calculated for
Al III 4s 2S1/2 − 4p 2P1/2 transition at λ = 5722.7 Å for B = 4 T and a line of
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Fig. 1.14 Simulated Al III 4s 2S1/2 − 4p 2P1/2 transition lineshape for B = 4 T and Stark broad-
ening corresponding to ne = 5 × 1017 cm−3. Line of sight is perpendicular to the B-field direction

sight perpendicular to the magnetic field direction. Similar difficulty may arise in a
hot or turbulent plasmas where the Doppler broadening smears out the Zeeman-split
pattern.

In observations perpendicular to the magnetic field direction, the photons emitted
in the �m = 0 transitions (red arrows in Fig. 1.12) are linearly polarized along the
B-field direction (defined asπ polarization), whereas the photons from the�m = ±1
transitions (blue arrows in Fig. 1.12) are linearly polarized perpendicular to the B-
field direction (defined as σ polarization). Since the �m = 0 and �m = ±1 transi-
tions have different splitting, and the Stark, Doppler, and instrumental broadenings
are the same for each splitting component, the comparison of the lineshapes of the
two different polarizations allows for the B-field determination [67], even if the
Zeeman splitting is not resolved. Figure1.15 shows the comparison of the two sim-
ulated lineshapes for π (red) and σ (blue) polarizations with the same plasma and

Fig. 1.15 The red and blue solid lines are simulatedAl III 4s 2S1/2 − 4p 2P1/2 transition lineshapes
of π and σ polarizations, respectively, for B = 4 T and ne = 5 × 1017 cm−3
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Fig. 1.16 Energy diagram
of the Ar III
(4S)4s 5S2 − (4S)4p 5P2
transition in the presence of a
magnetic field

magnetic field parameters (B = 4 T, ne = 5 × 1017 cm−3). The difference in the
lineshape widths of the two polarizations is used for the axial magnetic field deter-
mination.

For the azimuthalmagnetic field (Bθ) determination the emission from the implod-
ing argon plasma was used. In Fig. 1.16, an example of energy splitting due to the
Zeeman effect is given for Ar III (4S)4s 5S2 and (4S)4p 5P2 atomic levels. In the
present work, the transition between these two atomic levels was used for the mea-
surements of Bθ that is generated by the current carried by the plasma. The arrows
show the electric dipole allowed transitions between states with �m = ±1. These
are the transitions observed when the viewing direction is parallel to the magnetic
field. The resultant line splitting for B = 4 T is shown in Fig. 1.17. For electron
densities ne > 1018 cm−3 and B-fields of several Tesla, which are the typical values
of ne and Bθ in our imploding plasma shell experiments, the Zeeman pattern of the
transition is unresolvable as can be seen in Fig. 1.18. Therefore, similarly to the Bz

measurements, also for the Bθ determination we employed a technique that is based
on the polarization properties of the Zeeman line splitting.

In observation parallel to themagnetic field direction, photons emitted in�m = 1
transitions (red arrows in Fig. 1.16) are circularly polarized and are defined as σ+
polarization. Photons emitted in �m = −1 transitions (blue arrows Fig. 1.16) are
also circularly polarized, but in the opposite direction than the σ+ photons, and are
defined as σ− polarization. Since the �m = 1 and �m = −1 transitions are shifted
in different direction, the measurement of the relative spectral shift between σ+
and σ− allows for the B-field determination. Figure1.19 presents two lineshapes
which are simulated for the same plasma and magnetic field parameters (B = 4
T, ne = 2 × 1018 cm−3), the red profile represents the lineshape of σ+-polarization
and the blue profile represents the lineshape of σ−-polarization. The relative shift
between the lineshapes of the two polarizations was used for the Bθ determination.
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Fig. 1.17 Calculated Ar III (4S)4s 5S2 − (4S)4p 5P2 transition line splitting for Bθ = 4 T. The
black dashed line represents the spectral position of the transition without external magnetic field.
Line of sight is parallel to the B-field direction

Fig. 1.18 Simulated Ar III (4S)4s 5S2 − (4S)4p 5P2 transition lineshape for B = 4 T and Stark
broadening corresponding to ne = 2 × 1018 cm−3. Line of sight is parallel to the B-field direction

Fig. 1.19 The red and blue solid lines are simulated Ar III (4S)4s 5S2 − (4S)4p 5P2 transition
lineshapes of σ+ and σ− polarizations, respectively, for B = 4 T and ne = 2 × 1018 cm−3
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Chapter 2
Experimental Setup

The experimental setup is designed to enable the systematic investigation of the
axial and azimuthal magnetic fields evolution and plasma properties during Z-pinch
implosion in a wide range of plasma and magnetic field parameters.

A quasi-static, nearly uniform axial magnetic field of up to 0.4 T is generated by a
pair of Helmholtz coils (see Fig. 2.1 for the schematic description of the components
located inside the vacuum chamber). Each coil has a radius of 50mm and is driven by
a circuitwith relatively slow rise-time (rise time≈5ms) to allow for themagnetic field
to penetrate into the anode-cathode (A-K) gap through the conducting electrodes.
Distance between centers of the coils is equal to the radius of coils in order to achieve
uniform distribution of Bz0 inside the A-K gap.

Subsequently, the gas load is injected into a 10-mm wide anode-cathode gap by a
fast gas-puff system with a converging-diverging nozzle. The nozzle forms a hollow
cylindrical gas shell with an external diameter of ≈38mm and an internal diameter
of ≈14mm (see Fig. 2.2). In all of the experiments presented here, only shell nozzle
with argon gas is used. The discharge is initiated when the gas load reaches a selected
value between10–30µg/cm. In addition, the gas-puff systemhas an on-axis jet nozzle
that is connected to a separate gas plenum. This feature allows for the introduction of
a gas-dopant into the plasma axis region. Furthermore, it is possible to mount a solid
target onto the jet nozzle and to use laser ablation for introducing a dopant along the
plasma axis. This feature gives further flexibility in selecting suitable species and
atomic transitions for the various measurements.

The current is generated by simultaneously discharging four, high voltage, 4-µF
capacitors connected in parallel, driving a 300-kA current pulse with a rise time
of 1.6 µs. The schematic diagram of electrical circuit of the pulse-power generator
and plasma is shown in Fig. 2.3. The discharge results in a gas breakdown and the
produced plasma carries a current that exerts a �j × �B force in the inward radial
direction, compressing the plasma and the axial magnetic field.
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Fig. 2.1 Schematics of
components inside the
vacuum chamber

Fig. 2.2 Nozzle geometry.
Part 1: convergent section
with subsonic flow. Part 2:
neck with Mach 1 flow. Part
3: divergent section with
supersonic flow
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Fig. 2.3 Electrical circuit
diagram of the pulsed-power
generator and plasma. LPPS
and RPPS represent the total
inductance and resistance of
the pulsed-power generator,
respectively

2.1 Diagnostic Setups

To study the axial and azimuthal magnetic fields evolution and the plasma param-
eters, spectroscopic methods were used. Three different spectroscopic setups were
employed. Figure2.4 presents the optical setup used for the simultaneous measure-
ments of the axial and azimuthal magnetic fields at z = 3.5 mm (anode is defined as
z = 0). The simultaneity of the measurements is important in our experiments due to
the irreproducibility that characterizes experiment of high-current pulses. This was
achieved by employing two UV-visible spectroscopic systems that simultaneously
observed line emissions along various chords of the cylindrical plasma. One system
includes a 1-m spectrometer equipped with a 2400 grooves/mm grating, which for
a typical slit width of 50µm, provides a spectral resolution of 0.4 Å. The second
system includes a 0.5-m imaging spectrometer, equipped with a 1800 grooves/mm
grating, which for a typical slit width of 50µm, provides a spectral resolution of 0.9
Å. For the light detection, the output slit of each of the spectrometers is coupled to
a single-gated (3 ns) ICCD camera. The resolution of each spectrometer is mainly
defined by the pixel size of the ICCD camera and by the performance of the camera’s
electrons and light optics.

The Bz measurement is based on the line-width comparison of π and σ polar-
ization components emitted from dopant transitions. The dopant is generated along
the imploding plasma axis by laser ablation (λ = 1064 nm, tpulse = 7 ns, Epulse =
300 mJ) of an aluminum target. The π and σ polarization components were recorded
simultaneously on a single detector by exploiting the imaging properties of the
0.5-m spectrometer. The collected light from the dopant plasma is split into π and
σ components by a polarizing beam-splitter and each component is imaged on the
upper and lower part of the spectrometer’s slit, respectively (see optical system at
the right side of Fig. 2.4).
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Fig. 2.5 Spectroscopic setup for measurements of the axial magnetic fields distribution

The Bθ determination is based on the relative shift betweenσ+ andσ− polarization
components of light emitted from the imploding plasma shell. Both polarization
components were recorded simultaneously on a single detector by using a bifurcated
optical fiber imagedon the1-mspectrometer (see optical system in the left of Fig. 2.4).
While the plasma cross section is imaged on each of the bifurcated ends, composed of
50 fibers, the combined end ensures all 100 fibers are viewed by the spectrometer. The
collected light from the imploding plasma is phase shifted by a quarter-wave plate,
and subsequently split into σ+ and σ− components by a polarizing beam-splitter.
Each of the polarization components is imaged on a separate fiber bundle end. We
note, the spectral line used for the Bθ measurement also allows for the simultaneous
determination of electron density (ne) from the Stark broadening.

A more detailed description of the spectroscopic methods utilized for the axial
and azimuthal magnetic fields measurements is given in Sects. 1.3.2 and 3.1.

Figure2.5 presents the optical setup used for the measurements of the axial mag-
netic field distribution on the symmetry axis in 0 < z < 5 mm range. Different from
the setup presented in Fig. 2.4, that was designed to obtain Bz at specific z location,
here the measurements are aimed to obtain spectrum for each polarization at all
z-positions simultaneously. The π and σ polarizations were measured in different
shots in order to collect more light from the dopant emission at z ∼ 5 mm, where
the light intensity was very low. In order to reduce the effect of the shot-to-shot
irreproducibility, the measurements were repeated several times and then averaged.
As shown in Fig. 2.5, the light from the dopant plasma column, in the selected polar-
ization, was imaged (using two lenses, a polarizer and dove prism) along spatially
resolved spectrometer’s slit. The spectrometer’s output port was coupled to the gated
ICCD camera.

Figure2.6 presents the optical setup used to measure simultaneously the plasma
parameters along various chords of the cylindrical plasma. This spectroscopic setup
was designed to consist only reflecting optics (i.e. mirrors) in order to exclude
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chromatic aberration that significantly distort the measurements when wide spec-
tral region is used, as required here for the plasma parameters determination. The
imploding plasma was imaged on the slit of the 0.5 m imaging spectrometer using
a concave mirror. As shown in the Fig. 2.6, the concave mirror’s axis is rotated by
∼6◦, in order to separate the optical paths of the incident and reflected rays, while
maintaining the astigmatic aberration small.

Fig. 2.6 Spectroscopic setup for measurements of the plasma parameters

Fig. 2.7 Interferometric setup
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To study the instabilities evolution for different initial Bz0, 2D visible imaging and
interferometry are used. The plasma is imaged from the radial direction by a 300-mm
focal-length lens with 3 × demagnification. The plasma self-emission filtered to the
4000–6000 Å region is recorded by an ICCD camera with a gate time of 5 ns.

The interferometric system, shown in Fig. 2.7, consists of a Michelson interfer-
ometer, using the second harmonic (532 nm) of a Q-switched Nd:YAG laser with a
pulse duration of 7 ns and a CCD camera.

2.2 Initial Conditions Characterization

2.2.1 Initial Gas Distribution and Time-Evolution
Measurements

Interferometric andPlanarLaser InducedFluorescence (PLIF)methods are employed
to examine the gas-valve and nozzle performance, by the determination of the gas
distribution and its evolution in the anode-cathode gap.

The interferometric setup utilizes a Mach-Zender interferometer with a 100 mW
CW laser at 532 nm. A photodiode is placed at a certain point in the region of interfer-
ence and records the intensity of the fringes as a function of time. This measurement
gives us the temporal evolution of the gas density integrated along the probe-beam
path. Figure2.8 shows a gas evolution measured at the distance of 5 mm from the
nozzle outlet and integrated along the probe-beam passing through the diameter of
the gas column. The black curve represents the phase shift evolution when the nearly
transperent cathode mesh is mounted at the distance of 10 mm from the nozzle (sim-
ulating the condition of the experiment). The red curve represents the phase shift
evolution without the cathode mesh. In both measurements the shell-nozzle plenum
was filled with CO2 gas at 1 atm and the jet-nozzle plenum was empty. These curves
show clearly that in both cases the gas evolution is similar for the first 180µs (t=0
is set by a pin-trigger discharge). After 180µs, part of the gas that is back-scattered
from the cathode starts to effect the gas distribution along the probe-beam. Pin-trigger
is an electrode located in the shell-nozzle convergent section (see Fig. 2.2) and prior
to the Z-pinch discharge is set to 2 kV relatively to the nozzle. The breakdown
between the pin-trigger and the nozzle occurs when the gas starts flowing into the
nozzle inlet. In the experiment, this pulse is used for triggering delay generator that
generates the time-sequence of Z-pinch discharge and instruments operation. Such
triggering sequence guarantees reproducibility of initial gas distribution when the
Z-pinch discharge is initiated.

Figure2.9 presents a comparison between the phase shift evolution obtained for
shell- and jet-puff (black curve), with one obtained for shell-puff only (red curve). In
both cases the measurements are performed without the cathode mesh. The jet-puff
only is not presented, because the pin-trigger electrode can be located only along
the shell-nozzle gas flow. From Fig. 2.9 one can see that the gas from the jet-nozzle
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Fig. 2.8 Interferometric measurements of the injected shell-gas evolution. Both curves represent
the probe beam phase shift evolution measured at 5 mm distance from the nozzle. The black curve
is the phase shift with the cathode mesh mounted at 10 mm distance from the nozzle and the red
curve is the phase shift evolution without the cathode

appears in the anode-cathode gap about 20 μs earlier than the shell-nozzle gas, and
also reaches steady state earlier.

In the PLIF measurement a planar laser beam is directed through the gas flow,
doped with amolecular tracer. The wavelength of the incident beam is tuned to excite
a particular transition of the molecular tracer. Subsequently, the tracer fluorescent
emission is recorded by the ICCD camera placed perpendicularly to the beam. In
the present work, acetone tracer is used and irradiated by λ = 354.7 nm laser beam
(3rd harmonic of Q-switched Nd:YAG laser). PLIF measurement gives the spatial
gas distribution (assuming that the tracer is uniformly distributed inside the gas,
therefore, the light-intensity is proportional to the gas density) at a certain time (the
time scale of the fluorescence emission (few ns) is much smaller than the time scale
of the gas flow (few tens μs)). Figure2.10 presents a PLIF image recorded by ICCD
camera at 180µs after the pin-trigger signal. It is seen from the image that at t=180µs
the jet- and shell-puff inside the anode-cathode gap (up to 6 mm) nearly preserve the
form and dimensions set by the nozzles’ outlet geometry. At the region z > 6 mm
the effects of back-scatterd gas and radial gas expansion become notable.

Due to the planar geometry of the exciting laser beam, thePLIFmeasurements give
information on the gas-distribution as a function of radius (at certain time) without
the need of applying inverse Abel-transform procedure. Therefore, combining the
PLIF results with the cordal-integrated interferometric measurements (Fig. 2.9), one
obtains themass-per-length time-evolution of the shell- and jet-puffs. This parameter
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Fig. 2.9 Interferometric measurements of the injected gas evolution. Both curves represent the
probe-beam phase-shift evolution measured at 5 mm distance from the nozzle. Black curve is the
phase shift as a function of time when both nozzle plena were filled with CO2 gas at 1 atm and the
red curve is the same but only shell-nozzle plenum was filled with CO2 gas at 1 atm

Fig. 2.10 ICCD PLIF image recorded at 180µs after the pin-trigger signal. Gas pressure (CO2) in
both plena was set to 2 atm
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Fig. 2.11 CO2 gasmass-per-length evolution at a distance of 5mmfrom the nozzle outlet. The black
curve represents the mass per length time dependence of the shell-puff. The red curve represents
the mass per length time dependence of the jet-puff

is important for the plasma and magnetic field dynamic simulations. Figure2.11
presents the CO2 gas mass per length evolution at the distance of 5 mm from the
nozzle outlet. The initial pressure in each of the plena was set to 1 atm and the
interferometric measurements are performed without the cathode mesh (using the
results of Fig. 2.8 one can assume that the mass-per-length evolution with cathode
mesh is the same as without the mesh for the first 200 ns).

2.2.2 B-Dot Calibration for Discharge Current
Measurements

The measurement of the discharge current in the circuit is performed by a B-dot coil
placed between the A-K gap at z = 5 mm (z = 0 is at the outlet of the nozzle), and
the return-current path at r ≈ 120mm. The B-dot coil consists of a conductive loop
connected to a voltage recording device. The voltage on the coil is induced due to
changes in the magnetic flux through it. Magnetic flux passing through the loop is
proportional to the current flowing in the load, therefore using the initial condition
I (t = 0) = 0 A and the time integral of the voltage measurements on the B-dot
we obtain a curve proportional to the current evolution. The absolute calibration of
the B-dot is performed using the fit to the measured time-integrated B-dot signal as
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explained in the next paragraph. For the calibration purposes the anode-cathode gap
was bridged by an aluminum conductor that simulates the plasma column electric
conductivity.

The pulse-power system shorted at A-K gap is a RLC circuit (see Fig. 2.3), there-
fore its current can be simulated by a damped sinus function: I (t) = Ae−t/τ sin(ωt),

where τ = 2L
R ; ω =

√
1
LC − R2

4L2 (R, L , and C are the circuit resistance, induc-
tance, and capacitance, respectively) . From the best fit to the integrated B-dot
signal one finds the damping constant τ and frequency ω, and together with the
measured capacity C and the charging voltage of the capacitors V0 it is possible
to obtain the circuit R, L , current amplitude, and rise time. The total capacitance
of the current-generating circuit is C = 16µF, and the capacitors are charged to
V0 = 20 kV. The best fit shown in Fig. 2.12 is obtained for: τ = 10−5 s; ω =
1.043 × 106 s−1. Therefore the circuit parameters are: R = 11.5 m�, L = 60
nH, trise = 1.5µs, Imax = 280 kA. The proportionality constant α (or the calibra-
tion constant between the B-dot and the current generating circuit) is given by:
α = Imax/(maximum of time integrated Bdot signal) = 4.2 × 1010.

Figures2.13 and 2.14 present the typical traces of the B-dot signal (black curve)
of shots with plasma and the calculated (using proportionality constant α) discharge
currents (red curve). Figure2.13 shows the discharge with the capacitors charged to
23 kV and without the application of initial axial magnetic field. We note, that the
deep in the B-dot trace observed at t ∼ 700ns is due to the fast increase of the plasma
inductance and in some cases also the plasma resistance during the final stage of the
implosion. This causes a significant rise of the plasma impedance and subsequently
drop of the current, due to the term dL

dt I in RLC equation with varying inductance:
V = L dI

dt + dL
dt I + RI . Figure2.14 shows the discharge with the capacitors charged

to 23 kV for Bz0 = 0.4 T. Here, the deep in the B-dot trace is not observed due the
significant current loss to the low-density peripheral plasma when Bz0 is applied,

Fig. 2.12 Time integrated
Bdot signal (black curve),
and its simulation (red curve)
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Fig. 2.13 B-dot trace (black) and calculated current (red) for a typical shot with plasma of the
pulsed-power system. The discharge was performed with the capacitors charged to 23 kV and
without the application of initial axial magnetic field

Fig. 2.14 B-dot trace (black) and calculated current (red) for a typical shot with plasma of the
pulsed-power system. The discharge was performed with the capacitors charged to 23 kV and with
Bz0 = 0.4 T
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as described in the Chaps. 3 and 4. The loss of the current to the peripheral plasma
keeps the impedance of the imploding plasma low throughout the implosion. The
fast oscillations (period ∼50ns) observed in the B-dot signal are found to be due to
the parasitic capacitance, parallel to the plasma, of the pulsed-power-generator feeds
(such oscillations of B-dot signals are typical in the pulsed-power devices).

2.2.3 Initial Axial Magnetic-Field Evolution Measurements

The external axial magnetic field, Bz,ext , is generated by a current pulse (rise-time
≈4.5ms) driven through the Helmholtz coils. Since, Bz,ext is varying in time, also
here a B-dot probe is used for the determination of its evolution inside the A-K gap.
A B-dot probe is made of three 7 mm diameter loops, which is mounted inside the
A-K gap at z ≈ 5mm. The voltage generated in the B-dot is proportional to the rate
of the magnetic flux change. The time integration of the B-dot signal and the known
encircled area give the axial magnetic field evolution.

Bz,ext (t) = 1

NS

∫ t

0
V (t ′)dt ′ (2.1)

Fig. 2.15 Evolution of the external axial magnetic field, generated by the Helmholtz coils at
different radial positions



50 2 Experimental Setup

N is the number of the loops, S is the area of each loop, and V (t ′) is the measured
B-dot voltage signal.

Figure2.15 presents the evolution of the external axial magnetic field gener-
ated by the Helmholtz coils at z ≈ 3mm and different radial positions. The rise
time of the axial B-field is 4.5 ms, which is much longer than the time scale
of the plasma compression (∼1µs). Therefore, we consider Bz,ext constant dur-
ing the plasma implosion. The plasma discharge is initiated at the maximum of
Bz,ext , i.e. Bz0 = Bz,ext (t = 4.5ms) It is seen from Fig. 2.15 that at this time Bz,ext

is most uniform for r ≤ 21 mm. In the used configuration of Helmholtz coils, the
spatial variation of the magnetic field is <2% in the A-K gap (0 ≤ z ≤ 10 mm,
r ≤ 21 mm).



Chapter 3
Results

3.1 Simultaneous Measurements of the Azimuthal
and Axial Magnetic Fields

To understand the evolution of the plasma implosion and the nature of the plasma-
B-field interaction it is essential to measure the azimuthal and axial magnetic fields
evolution during the implosion. The main challenge in the determination of the
azimuthal magnetic field in typical imploding plasma experiments comes from the
large Stark broadening of the emission lines due to the high electron density that
results in the smearing out of the Zeeman-split pattern. To resolve this problem
we employed spectroscopic polarization technique based on the measurement of
the relative wavelength shift between the σ+ and σ− polarizations of the Zeeman
components (see Sect. 1.3.2). This approach is applicable when the line-of-sight
is parallel to the measured magnetic field. Therefore, here it can be used for Bθ

determination at the outer edge of the plasma shell, radially observed, where the
Bθ is directed along the line-of-sight (see upper left inset in Fig. 2.4). The high
sensitivity of this method is due to the fact that both polarization components are
measured simultaneously, using a single spectrometer and a single detector, allowing
for a reliable and accurate determination of very smallwavelength difference between
the polarization components. We note that this method is applicable even when Bz is
also present, as long as Bθ > Bz, a condition that is valid in our case for the plasma
periphery.

The determination of Bz inside the plasma shell poses two major difficulties. The
first is the difficulty to distinguish between the axial and the azimuthal magnetic
fields along the line of sight, and the second is the absence of light emission from the
nearly hollow axial central region of the plasma column.We succeeded to circumvent
these problems by introducing a dopant into the central region of the plasma column,
employing laser ablation of an aluminum target placed onto the jet-nozzle. Thus,
the axial magnetic field evolution and distribution was measured using selected tran-
sitions of ions generated from the dopant, while the azimuthal field was measured
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using transitions in the plasma shell-gas ions. The dopant densitymust be sufficiently
high (ne ∼ 3 × 1017 cm−3), so its line emission is clearly observed above the ambient
argon plasma continuum. The difficulty in measuring magnetic fields (in the relevant
range of 1–5 T) in such densities is the smearing out of the Zeeman splitting by the
Stark broadening. To overcome this difficulty, the magnetic field is determined using
the polarization technique based on themeasurements of the relativewidth difference
between the π and σ polarizations of the Zeeman components [1] (see Sect. 1.3.2).
The dopant technique allows for utilizing a large variety of materials as dopant and
selecting the most suitable atomic transitions for the Bz measurements in the studied
range of parameters. Here, the Al III 4s 2S1/2–4p 2P1/2 transition at λ = 5722.7 Å
was selected for the axial B-field determination due to its relatively high emission
intensity, high sensitivity to the magnetic field, and since it is not blended with the
argon lines. Also, this atomic transition doesn’t involve the ground state and thus
opacity effects are negligible.

Figure3.1 presents an example of a spectroscopic image recorded at t = 805 ns
(where the beginning of the current is defined as t = 0) for Bz0 = 0.4 T and at z = 3.5
mm away from the nozzle. The upper and bottom parts of Fig. 3.1 present the π-
and the σ- components of the aluminum emission, respectively. It is seen in Fig. 3.1
that the Al dopant resides in the −0.6 < y < 0.6 mm region therefore providing an
information on the Bz-field, averaged over �y ≈ 1 mm. The Al lines seen on the
image are Al III 4s 2S1/2–4p 2P3/2 at λ = 5696.6 Å and Al III 4s 2S1/2–4p 2P1/2

at λ = 5722.7 Å. Since the stronger Al III transition at λ = 5696.6 Å is slightly
blended with weak argon lines, only the transition at λ = 5722.7 Å is used for the
Bz determination. The extraction of Bz from the measured data involves three main
steps:

1. Lineouts generation of theAl III 4s 2S1/2–4p 2P1/2 transition: In order to improve
the signal to noise ratio, the lineouts are integrated across the dopant plume. The
axial magnetic field is assumed to be nearly homogeneous in this region (dopant
extent in radial direction is ∼1 mm).

2. Bz determination: The magnetic field is extracted by simultaneous fitting of the
measured π and σ-polarization lineshapes, with the convolution of the calcu-
lated Zeeman pattern, Lorentzian (due to Stark broadening), and Gaussian (due
to instrumental and Doppler broadenings) profiles. The parameters of the simu-
lations are kept the same for both π and σ. It is emphasized that only the different
contributions of the Zeeman pattern to the π and σ polarizations causes a differ-
ence in the simulated lineshapes and allows for the Bz-field determination. The
Gaussian contribution to the lineshapes is limited to 0.6 < FWHMGauss < 0.8
Å, the lower limit results from the known instrumental broadening, and the upper
limit from the lineshape measurements of the freely expanding dopant plasma.

3. Error estimation: The lower bound of the Bz error bar is determined in two steps.
First, the lineshape of themeasured π-polarization component, that has a smaller
Zeeman splitting, is fitted byVoigt distributionwithBz = 0. In thiswayweobtain
the largest possible contribution of the Gaussian and Lorentzian distributions to
the lineshape. In the second step, we find the best fit for the lineshape of the
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Fig. 3.1 Spectral image of the Al III 4s–4p doublet at λ = 5696.6 Å and λ = 5722.7 Å, recorded
at t = 805 ns, when the plasma radius is 6mm. The upper and bottom parts of the image consist of
the π and σ polarized components of the dopant spectrum, respectively

σ-polarization component using the upper bound for theGaussian andLorentzian
parameters found in step one, and Bz is a free parameter. This procedure gives
the lowest possible Bz for each data point.
The determination of the upper bound of theBz error bars is similar. First, we find
the smallest possible contribution of the Gaussian and Lorentzian distributions
to the lineshape. The FWHM of the Gaussian was set to be the instrumental
broadening of 0.6 Å, and the FWHM of the Lorentzian was set to be of the Stark
broadening of the Al dopant plasma in free expansion (Bz = 0) that was 1.3 Å (it
was seen that the dopant plasma density is lowest for dopant expansion without
Bz-field). The upper bound of Bz is then determined by simultaneous fitting of
the measured π and σ-polarization lineshapes with fixed FWHMGaussian = 0.6
Å, FWHMLorentz = 1.3 Å, and Bz as a free parameter.

An example of the lineshape analysis performed for the π and σ components of
the Al III 4s 2S1/2–4p 2P1/2 transition, obtained from the spectral image shown in
Fig. 3.1, is presented in Fig. 3.2. The errors in the lineshape data points are determined
from the standard deviation of the binned (performed along the y-direction) pixel
signals. The clear difference in the widths of two polarization components reveals
the existence of an axial magnetic field in the measured region. The simultaneous
best fit simulation for π and σ is obtained for Bz = 2.9 T, FWHMLorentz = 1.7 Å,
and FWHMGauss = 0.6 Å.

As described in Sects. 1.3.2 and 1.2, Bθ was measured simultaneously with Bz

using the relative shift between theσ+ andσ− polarization components of theZeeman
pattern of the Ar III (4S)4s 5S2–(4S)4p 5P2 transition. Figures3.3 and 3.4 are exam-
ples of two spectroscopic images of the argon plasma spectrum recorded at t = 595
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Fig. 3.2 Comparison between the π polarization (blue circles) and σ polarization (red circles)
lineshapes recorded at t = 805 ns for Bz0 = 0.4T, together with their best fit simulations (solid
lines) obtained for Bz = 2.9 T, FWHMLorentz = 1.7 Å, and FWHMGauss = 0.6 Å

ns for Bz0 = 0 and t = 815 ns for Bz0 = 0.4 T, respectively. Both images show the
cord-integrated emissions from the plasma cross section at z = 3.5 mm. The lines
seen in these figures originate from Ar III (4S)4s 5S2–(4S)4p 5P2 at λ = 3301.9 Å
and (4S)4s 5S2–(4S)4p 5P1 atλ = 3311.2Å transitions, together with several uniden-
tified lines that are likely belong to Ar IV, considering their time evolution. For the Bθ

determination, the Ar III transition at λ = 3311.2 Å was selected due to its relatively
high intensity, high sensitivity to the magnetic field, and the fact that the atomic tran-
sition doesn’t involve the ground state and thus opacity effects are negligible. Only
lineouts generated at the periphery of the plasma were used for the Bθ extraction, in
order to ensure that the line of sight is parallel toBθ-field and to obtain theB-field due
to the total current flowing through the imploding argon plasma. The data analysis
process is similar to the one described earlier for the Bz determination. First, the
lineout of the Ar III transition at λ = 3301.9 Åwas generated by integration over the
radii in which the emission changes from ∼5 to ∼30% of the peak emission, after
inverse Abel transform. This integration corresponds to �r � 0.5 mm, whereas the
plasma shell width is about 3mm. Then, the σ+ and σ−-polarization components are
fitted simultaneously taking into account the convolution of the calculated Zeeman
pattern, Lorentzian, and Gaussian profiles. Bθ is then determined from the relative
wavelength shift between the two polarization components.

An example of the lineshape analysis performed for the σ+ and σ− components of
the Ar III (4S)4s5S2–(4S)4p5P2 transition, obtained from the spectral images shown
in Figs. 3.3 and 3.4, are presented in Figs. 3.5 and 3.6, respectively. As was already
mentioned, the errors in the lineshape data points are determined from the standard
deviation of the binned (performed along the y-direction) pixel signals. In both fig-
ures, we clearly see the relative wavelength shift between the two spectral features
due to the presence of the magnetic field. The best fit for the lineshapes and the wave-
length shift presented in Fig. 3.5 is obtained for Bθ = 4.1 T, FWHMLorentz = 0.55 Å
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Fig. 3.3 Spectral image of
the Ar III
(4S)4s 5S2–(4S)4p 5P2
transition at λ = 3301.9 Å
recorded at t = 595 ns for
Bz0 = 0. The upper and
bottom parts of the image
consist of the σ+ and σ−
polarized components of the
argon plasma spectrum,
respectively. The dashed line
represents the unshifted
(zero Bθ-field) position of
the used line

Fig. 3.4 Spectral image of
the Ar III
(4S)4s 5S2–(4S)4p 5P2
transition at λ = 3301.9 Å
recorded at t = 815 ns for
Bz0 = 0.4 T. The upper and
bottom parts of the image
consist of the σ+ and σ−
polarized components of the
argon plasma spectrum,
respectively. The dashed line
represents the unshifted
(zero Bθ-field) position of
the used line

that corresponds to ne ∼ 4.6 × 1017 cm−3, and FWHMGauss = 0.5 Å that is mostly
due to the instrumental broadening (∼0.4 Å). The best fit for the lineshapes and the
wavelength shift presented in Fig. 3.6 is obtained for Bθ = 1.9 T, FWHMLorentz = 1
Å that corresponds to ne ∼ 7 × 1017 cm−3, and FWHMGauss = 0.5 Å.

Figure3.7 presents the measurements of Bθ as a function of the plasma radius,
together with the calculated Bθ using the measured total current and the plasma
radius from which the Ar III lineout is generated, as explained above. Since for
the magnetic fields in the present study the Zeemann splitting of the lines used for
the B-field diagnostics is small compared to the spin-orbit interaction energies of
the multiplet, the distance between the line centers of σ+ and σ− components is
proportional to Bθ magnitude. Therefore, the error bars of the measured Bθ were
determined from the confidence range of the lineshape centers of the best-fit to the
σ+ and σ− polarization components.

All themeasurements presented in Fig. 3.7were performed forBz0 = 0, at z = 3.5
mmfrom the anode (nozzle).Due to the fast ionization processes in implosionwithout
axial magnetic field, theBθ measurements based on the Ar III transition are limited to
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Fig. 3.5 The σ+ polarization (blue circles) and σ− polarization (red circles) lineshapes recorded
at t = 595 ns in implosion without initial axial B-field, together with their best fit simulations (solid
lines) obtained for Bθ = 4.1 T, FWHMLorentz = 0.55 Å, and FWHMGauss = 0.5 Å

Fig. 3.6 The σ+ polarization (blue circles) and σ− polarization (red circles) lineshapes recorded at
t = 815 ns for Bz0 = 0.4T, together with their best fit simulations (solid lines) obtained for Bθ = 2
T, FWHMLorentz = 1 Å, and FWHMGauss = 0.5 Å

500 < t < 600 ns, corresponding to radii range 8.5 < R < 10.5 mm. In the future,
we plan to employ Ar IV transitions in order to extend the Bθ determination to later
times. Bθ from the current is calculated by

Bθ = μ0I(t)

2πR(t)
, (3.1)

where I(t) and R(t)- are the total current and the plasma radius at time t, respectively.
Here, the calculated Bθ is the expected azimuthal magnetic field assuming all the
current flows within the plasma radius. It is seen in the figure that for implosions
without initial Bz the measured and calculated data points agree well. This shows
that all the current is flowing within the imploding argon shell. This result agrees
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Fig. 3.7 Measured Bθ (red
dots) as a function of the
argon plasma radius
measured at z = 3.5 mm
from the anode for Bz0 = 0,
together with the calculated
Bθ (blue triangles) using the
total current and plasma
radius. The upper scale
shows the typical times that
correspond to each plasma
radius

with a previous study [1] carried out in Z-pinch implosion (without axial B-field)
showing that the entire current flows within the imploding plasma.

Figure3.8 presents the simultaneous measurements of Bz and Bθ as a function of
the plasma radius, together with the calculated Bθ using the measured total current
and plasma radius (assuming all the current flows in the observed plasma radius). All
the measurements presented in Fig. 3.8 were performed for Bz0 = 0.4 T, at z = 3.5
mm from the anode (nozzle). The plasma radius is determined from the spectral
images of the Ar III line and is defined to be the radius at which Bθ is measured at
the periphery of the Ar III line emission, as described above. The calculation of Bθ

from the current is given by Eq.3.1.
Figure3.8 presents the current flowing within the outer radius of the imploding

plasma (red dots) as a function of the plasma radius, together with the measured total
current (blue triangles). The current within the imploding plasma is calculated using
Eq.3.1 with measured Bθ at the outer radius of the argon plasma.

We now describe several important results observed in Figs. 3.8 and 3.9. The first
refers to the Bθ measurement. It is seen from the figure that the measured Bθ is much
smaller (∼4 times) than the expected value based on the total current and the observed
plasma radius. This result is in contrast to themeasurements performedwithout initial
Bz that showed a good agreement between the measured and calculated Bθ values.
The unexpectedly small magnitude of Bθ observed at the plasma outer radius for
discharges with Bz0 = 0.4 T shows that most of the current doesn’t flow within the
imploding argon plasma and even decreases with time as can be seen in Fig. 3.9. It
means that at times close to the stagnation (t > 750 ns), ∼75% of the total current
flows outside, at radii higher than the imploding plasma radius, raising a question
regarding the current distribution at these high radii. To resolve this puzzle, a new
spectroscopic setup to measure the azimuthal magnetic field at radii larger than the
imploding plasma radius was recently built. Recent results revealed the existence of
a low-density peripheral plasma and a significant current flow in this region (however
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Fig. 3.8 Measured Bθ (red
dots) and Bz (black squares)
as a function of the argon
plasma radius measured at
z = 3.5 mm from the anode
for Bz0 = 0.4 T, together
with the calculated Bθ (blue
triangles) using total current
and plasma radius. The
upper scale shows the typical
times that correspond to each
plasma radius

these measurements are outside the scope of the present research and can be found
in [2]). This is a very important finding because it shows that the presence of Bz

dramatically affects the current distribution. The discussion on this result will be
given in Chap. 4.

Another important result shown in Fig. 3.8 is that at times close to stagnation
(tstagnation ∼ 815 ns) Bz is almost 3× higher than Bθ. The observation that Bz > Bθ

at stagnation is in agreement with theoretical calculations presented in Sect. 1.2.1,
where always Bz,stagnation > Bθ,stagnation due to the plasma inertia effect. However, in
contrast to the theoretical calculations the measured maximum Bz is much lower
than the one predicted by the calculations (see Fig. 1.7). This relatively low com-
pression factor observed in the experiment is due to relatively small compressing Bθ,
as described above.

The third important result of these measurements is the significant delay of the
stagnation time for implosion with Bz0 = 0.4 T in comparison to implosion without
Bz. This is in contradiction with the predictions presented in Fig. 1.4. For example,
the measured stagnation times of plasma implosion with Bz0 = 0 and Bz0 = 0.4 T
are ∼665 and ∼815 ns, respectively, i.e the implosion with Bz0 = 0.4 T is ∼20%
longer than the implosion without Bz. On the other hand, for these parameters the
calculations predict only ∼3% difference in stagnation times (see Fig. 1.4 and Table
1.4). The large delay in stagnation time forBz0 = 0.4T is due to the observed “current
escape” from the imploding plasma to larger radii, resulting in much lower Lorentz
force j × B and subsequently smaller acceleration that leads to longer implosion
times.

Figure3.10 summarizes the Bz measurements as a function of the plasma radius,
together with the calculated axial magnetic field, assuming Bz is compressed by ideal
plasma (zero resistivity) implosion. Here, the plasma radius is assumed to be at the
radius of maximum Ar III line emission, obtained by Abel transform inversion of
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Fig. 3.9 Current flowing
within the imploding plasma
(red dots) as a function of the
argon plasma radius
measured at z = 3.5 mm
from the anode for Bz0 = 0.4
T, together with the
measured total current (blue
triangles). The upper scale
shows the typical times that
correspond to each plasma
radius

the Ar III spectral image. Note that the plasma radius definition here is different than
in Fig. 3.8 where it is taken at the outer periphery of the plasma). This definition of
the plasma radius by the maximum of the Ar III line emission is more relevant for
the estimation of the Bz confinement efficiency since the Bz-flux diffuses from inside
out. The Bz evolution in an ideal plasma implosion is calculated by Bz,ideal(t) =
Bz0

(
R0
R(t)

)2
, where R0 is the plasma radius at t = 0 and R(t) is the plasma radius

at time t. This formula represents the magnetic-field flux conservation within the
Bz-confinement radius as shown in Fig. 3.10. We note that the experimental data for
Bz consist also points obtained in shots where Bθ was not measured.

From Fig. 3.10, we see that at maximum compression (plasma radius ∼3.4 mm),
the measured Bz is ∼2 times smaller than the calculated Bz assuming 100% flux
conservation. This shows that for the plasma parameters of the present experiment
theBz-confinement efficiency is∼50%.Theuncertainty of the confinement efficiency
is obtained by assuming the largest and smallest possible values of the confinement
radius resulting in confinement efficiencies between 25 and 80%. The relatively
large uncertainty in the confinement radius determination is due to the width of the
plasma shell (FWHM ∼2mm) that is comparable to the plasma radius at stagnation
(∼3.5mm).

3.2 Axial Magnetic Field Distribution Along z-axis

To study the Bz distribution as a function of z and time, the optical arrangement
presented in Fig. 2.5 was employed. Also here we used the spectroscopic technique
based on the lineshapes width comparison between the π and σ polarizations of
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Fig. 3.10 MeasuredBz (black squares) as a function of the argon plasma radiusmeasured at z = 3.5
mm from the anode for Bz0 = 0.4 T, together with the calculated Bz (pink triangles) assuming an
ideal (zero-resistivity) plasma implosion

the Zeeman splitting. It is important to note that different from the measurements
presented in Sect. 3.1, each polarization was recorded in separate shots. Therefore,
in order to improve the signal-to-noise ratio and to smooth the effect of shot-to-shot
irreproducibility, each analyzed spectrum is obtained by averaging several spectral
images recorded at the same time.

An example of two spectral images recorded at t = 820 ns with Bz0 = 0.4 T is
presented in Fig. 3.11, the left and right panels present the π and σ-polarizations,
respectively. The lineouts generated from the spectral images are spatially integrated
over a certain z range, determined by the signal to noise ratio in each measurement.
For example, in the images recorded at t > 700 ns, the spatial integration for the
lineouts generated in the 0 < z < 3 mm region is 0.5mm, while at z ∼ 5 mm the
integration is performed over ∼2 mm. The lineshape analysis and the error determi-
nation is the same as described in Sect. 3.1.

Figure3.12 shows the measured Bz magnitude on the z-axis as a function of z at
different times of the plasma evolution. These measurements have been performed
during plasma implosion and into stagnation, that occurs at tstagnation ∼ 830 ns.

An interesting observation seen in Fig. 3.12 is that Bz develops a strong gradient
along the z-axis for t � 770 ns. The axial magnetic field near the anode is ∼2 times
smaller than at themiddle of the plasma (z ∼ 5mm). This result is consistent with the
plasma column shape observed in 2D imaging (6000–7500 Å) as shown in Fig. 3.13
for t = 825 ns. It is seen in Fig. 3.13 that at z = 5 mm the plasma is compressed
to a ∼40% smaller radius than in the near anode region. This difference in plasma
radii corresponds to ∼2.5× stronger Bz compression at z = 5 mm, assuming ideal
plasma implosion and taking an initial plasma radius of 19mm. These observations
are explained by the fact that the axial magnetic field lines are frozen in the metal
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Fig. 3.11 Spectroscopic images of the aluminum dopant emission recorded at t = 820 ns with
π-Zeeman component (a) and with σ-Zemann component (b). The measurements are performed
with the spatial axis of the image along the plasma symmetry axis

electrodes with Bz = Bz0. The field inside the metal can not be compressed. There-
fore, the spatial shape of the plasma near the anode surface is a result of the transition
from the uncompressed Bz = Bz0 in the electrode to the compressed axial magnetic
field further away from the anode surface, see Fig. 3.14. Such transition region is not
expected near the cathode made of 1mm diameter stainless steel wire mesh, since
the diffusion length of B-field for the time-scale of the implosion is comparable to
the diameter of the wire. However, this behavior can not be observed due to a ‘knife
edge’ mounted on the cathode surface that blocks the view of the plasma near the
cathode.

Another notable result seen in Fig. 3.12 (most clearly at z = 4.5 mm) is that Bz

decreases during stagnation (i.e. Bz(t = 825 ns) > Bz(t = 875 ns)). The decrease of
Bz indicates a diffusion of the axial magnetic field through the confining plasma. The
decreasingBz on axis and the continuous rise in current (that should give rise to larger
Bθ) should have led to further compression of the plasma shell. However, the plasma
radius (inferred from the 2D and interferometric measurements) remains practically
the same. This result indicates a “current escape” not only during the implosion stage,
but also from the stagnating plasma (where there is no experimental data for Bθ). We
see that further experimental data is required to understand the pressure balance at
stagnation.

3.3 Effects of Axial Magnetic Field on the Plasma
Implosion

The success of a Z-pinch application as an efficient x-ray source or for inertial
confinement fusion, crucially depends on the symmetry and stability of the plasma
implosion. Therefore, one of the objectives of the present research was to study the
effects of the preembedded axial magnetic field on the plasma instabilities during
implosion.
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Fig. 3.12 Bz as a function of z measured on the cylinder symmetry axis at different times of the
plasma evolution for Bz0 = 0.4T

Fig. 3.13 Bz measured on the cylinder symmetry axis (blue triangles) as a function of z and plasma
radius (red dots) as a function of z at t = 825 ns for Bz0 = 0.4T

The effects of the axial magnetic field on the plasma instabilities were studied
using temporally and spatially resolved 2D visible (4000–6000 Å) imaging, inter-
ferometry, and spectroscopy for four different cases of initial axial magnetic-field
magnitudes Bz0 = 0, 0.1, 0.2, and 0.4 T.

Figure3.15 shows the 2D images of plasma self emission obtained for the four
different initial Bz0 in three different stages of implosion: initial (left column), inter-
mediate (center column), and stagnation (right column). Atomic physics calculations
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Fig. 3.14 Schematic explanation of the electrode effect on the plasma dynamics and Bz distribution

Fig. 3.15 2D images of the plasma self emission for different times and initial axial B-fields. The
cathode mesh and the gas valve anode are, respectively, at the top and the bottom of each image.
Left and middle columns show data recorded during inward acceleration

show that the light intensity in the images is roughly proportional to n2e integrated
along the line of sight and has a week dependence on Te. Figure3.16 is similar to
Fig. 3.15, but for the interferometric images. The deviation of the interference fringes
from a straight line is proportional to the electron density integrated along the laser
path.

Both, 2D images and interferograms clearly show the development of non-
uniformities in the imploding plasma.

For low initial axial magnetic fields (Bz0 ≤ 0.1 T) and times t>700 ns, the plasma
column develops distinct cusps at its outer radius. This phenomenon is caused by
a magneto-Rayleigh-Taylor instability (MRTI), where the azimuthal magnetic field
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Fig. 3.16 The same as Fig. 3.15, with interferometric images

that pushes the plasma radially inward, acts as a light fluid [3]. A more rigorous
analysis of the MRTI will be given in the following section (Sect. 3.3.1).

For Bz0 = 0.2 T, another phenomenon of distinct filament-like structures is
observed, as can be seen in the 2D images in the intermediate stage of compression.
These filaments are inclined to the pinch axis, probably following the combined axial
and azimuthal magnetic field direction. Several theoretical and experimental works
(see Ref. [3] and references therein) also describe similar filamentation phenomena
in Z-pinch implosions but without preembedded Bz . All of these studies agree on
explaining the filament structures as a thermal type instability, but differ in describing
the plasma conditions in which they develop. Therefore, in Sect. 3.3.2 we determine
ne and Te of the filaments and of the surrounding plasma.

All the measurements for studying the instabilities are performed for a relatively
high argon gas load of 30 µg/cm that allowed for maximizing the energy coupling
from the current generator to the plasma.

3.3.1 Investigation of Magneto-Rayleigh-Taylor Instabilities

The most effective type of instability which can develop during the plasma shell
inward acceleration is the magneto-Rayleigh-Taylor instability (MRTI) [3]. There-
fore, mitigation of this type of instability is essential for Z-pinch performance
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Fig. 3.17 MRTI amplitudes as a function of time for Bz0 = 0 (blue circles), Bz0 = 0.1 T (green
triangles), and Bz0 = 0.2 T (red squares). The corresponding lines are the least squares linear fits
that show the amplitude tendency for each case, highlighting the mitigation of MRTI for larger Bz0
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Fig. 3.18 Illustration of the MRTI amplitude (�r) and wavelength (λ) determination for a 2D
image recorded at t = 855 ns and for an interferogram recorded at t = 850 ns with Bz0 = 0

optimization. There are several theoretical works (e.g. [5]) and experimental obser-
vations (e.g. [4]) that, investigated the mitigation of the MRTI by introducing an
axial magnetic field. However, most of the measurements in these experiments were
performed in the stagnation stage. Experimental data on the perturbation develop-
ment during the implosion of a Z-pinch in the presence of axial magnetic field are
still missing. Therefore, here we investigate the axial magnetic field effects onMRTI
during the entire implosion.

Here, the conditions inwhich theMRTI aremost clearly observed are in the plasma
column edges for Bz0 = 0 at times >700 ns (Figs. 3.15 and 3.16, upper panels of the
middle and right columns). Comparing the images obtained for Bz0 = 0 with those
for Bz0 > 0 provides strong evidence for the stabilizing effect of the preembedded
axial magnetic field on the implosion. This is demonstrated in Fig. 3.17 that shows
the average amplitudes of the MRTI as a function of time for three different Bz0.
The amplitudes are determined from the 2D images recorded at different times of
the implosion and are defined as the difference between the radii of adjacent cusp
and well, as illustrated in Fig. 3.18. It is seen that the larger Bz0 is, the smaller are
the amplitudes of the MRTI.
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(a) (b)

Fig. 3.19 a Time evolution of the plasma radius R(t) for Bz0 = 0.1 T (black dots) and the corre-
sponding fit (red dashed curve) together with the inferred plasma acceleration R̈(t) (blue curve). b
Plasma radial acceleration for different Bz0

An estimate of the MRTI growth rate γ for different Bz0 is obtained using the
plasma radial acceleration g and the characteristic wave number of the observed
perturbations k [3, 6]:

γ(t) ≈ √
g(t) k (3.2)

We note that Eq.3.2 diverges for k −→ ∞. However, in practice the observed fastest
growing wavenumber is finite, because some physical processes, which become
important for large k, are not considered in the derivation of Eq.3.2 [6].

The plasma acceleration is obtained from the 2D-images by fitting the time
evolution of the plasma column radii with an exponentially decaying function:
R(t) = A exp (−t/τ ) + R0 (where A, τ and R0 are fitting parameters), as demon-
strated in Fig. 3.19a forBz0 = 0.1T. Figure3.19b presents a comparison of the plasma
accelerations as a function of time for different Bz0. During intermediate implosion
times the plasma acceleration is smaller for larger Bz0, which according to Eq.3.2
should result in a lower growth rate of the MRTI. This result is consistent with the
observation summarized in Fig. 3.17.

The characteristic wavelength λ of the MRTI is defined as the average distance
between successive cusps seen in the 2D and interferometric images, as shown in
Fig. 3.18. It is interesting to note that while the instability amplitudes increase with
time the wavelengths don’t change significantly. In Table3.1 the observed character-
istic wavelengths and corresponding wavenumbers of the perturbations for different
Bz0 are presented in columns 2 and 3, respectively (For Bz0 = 0.4T, no clear MRTI
are observed). It is clearly seen that the observed perturbation wavenumber decreases
for increasing Bz0. This suggests that the restoring force of the bending axial mag-
netic field-lines significantly affects the wavenumber of the fastest growing MRTI
mode, and therefore impedes the growth of MRTI.

The knowledge of the perturbation wavenumber and the plasma acceleration
allows for estimating the total perturbation amplitude growth due to MRTI [3]. The
calculation is based on the instantaneous growth rate (

√
(g(t)k)) integrated over the

implosion time (using the WKB approximation):
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Table 3.1 Parameters for the MRTI study for different Bz0 at intermediate times of implosion:
(1) Bz0 magnitudes, (2) wavelengths of the observed MRT perturbations and (3) corresponding
wavenumbers of the MRT perturbations, (4) stagnation time, and (5) number of e-foldings (Eq. 3.3)

Bz0
T

λ
mm

k = 2π/λ
mm−1

tstag
ns

Number of e-foldings∫ tstag
t0

γ(t′) dt′

0 2 3.1 890 7

0.1 5 1.3 940 5.5

0.2 5 1.3 1020 4.5

0.4 >10 <0.6 1160 2

A(t) ∝ exp

(∫ tstag

t0

γ(t′) dt′
)

= exp

(∫ tstag

t0

√
g(t′) k dt′

)
. (3.3)

Here, t0 denotes the time when the instability starts to grow, determined by the first
appearance in the 2D images and interferograms, and tstag is the stagnation time. The
plasma stagnation typically coincides with a sharp maximum in UV radiation and
was determined by a UV (1200–2500Å) photo diode. The results of the integral in
Eq.3.3 (number of e-foldings) for the different Bz0 are given in the last column of
Table3.1.

It is seen from Table3.1 that larger Bz0 lead to a lower number of e-foldings,
and thus to reduced MRTI growth. In principle, smaller perturbation wavenumbers
do not necessarily reduce the MRTI growth since they are accompanied by longer
implosion times until stagnation (see Table1, column 6). However, the increase in the
implosion time with Bz0 is less significant than the decrease of the other parameters
in Eq.3.3, thus the MRTI growth is reduced.

Quantitatively, the number of e-foldings is decreased by 20% for Bz0 = 0.1 T
and by 35% for Bz0 = 0.2 T (in comparison to Bz0 = 0). This result can be related
directly to the measured MRTI amplitudes (see Fig. 3.17). For Bz0 = 0 the observed
amplitude at the stagnation time is ∼2 mm and decreases by 20% to ∼1.6 mm for
Bz0 = 0.1T. For Bz0 = 0.2T the MRTI amplitude is ∼1 mm representing a decrease
by 50%. It should be noted that the calculated number of e-foldings for Bz0 > 0
constitutes an upper limit since the calculation is based on a theory that does not
specifically consider the effect of the Bz-field lines bending. The effect of Bz is taken
into account only indirectly through the observed wavenumber and acceleration.

3.3.2 Investigation of Filament-Like Structures in Implosions
with Axial Magnetic Field

Filtered 2D images (bandpass filter 4000–6000 Å) of the plasma recorded at inter-
mediate times of implosion reveal the existence of regions in the plasma, in a form of
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Fig. 3.20 a 2D image of the
visible plasma self emission
recorded at t = 960 ns for
Bz0 = 0.2 T, and b lineout of
the 2D image taken at z = 5
mm

filaments, with significantly different emission intensity. The differences are espe-
cially pronounced in implosions with Bz0 = 0.2 T, as can be seen in Fig. 3.20.

Figure3.20a presents the 2D image of the plasma column recorded during the
implosion at t = 960 ns which demonstrates the existence of filament-like structures
(regions of higher emission) that are inclined to the z-axis. As seen in the lineout
(Fig. 3.20b), taken at z = 5mm (marked by the dotted line in Fig. 3.20a), the emission
intensity of the filaments in the visible spectral region is up to 50% higher than
that of the surrounding plasma. Our conjecture is that the filaments lye along the
direction of the combined Bz and Bθ fields. Assuming this is true, this indicates that
Bz and Bθ are comparable also in implosion with Bz0 = 0.2 T and mass per length
of 30 µg/cm (the measurements presented in Sect. 3.1 are for Bz0 = 0.4 T and mass
per length of 10 µg/cm). This also means that a large part of the current doesn’t
flow through the imploding plasma. Rather the current flows outside, since from the
measured total current and observed plasma radius, the expected Bθ is ∼9 T and it is
significantly larger than the calculated maximum Bz (∼3 T) obtained by assuming
flux conservation.

Time-resolved imaging spectroscopy (see Fig. 2.6) was used to study the plasma
parameters of both entities, the filaments and the surrounding plasma. The measure-
ments were performed for initial conditions of Bz0 = 0.2 T, at times of 900–1000
ns from the beginning of the implosion, when the filaments phenomenon is found
to be most pronounced. Figure3.21 presents two examples of argon plasma spectral
images recorded at t = 960 ns and t = 1000 ns, at z = 5 mm. These measurements
provide the emission intensity integrated along the line of the radial observation.
Generally, for cylindrically symmetric z-pinch sources, an inverse Abel transform
can be performed to obtain the radial distribution of the emission. However, in the
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Fig. 3.21 a Spectroscopic image of argon plasma emission at z = 5 mm for Bz0 = 0.2 T, recorded
at t = 960 ns. b The same as a, but for t = 1000 ns. The second order of the Ar III and Ar IV UV-
lines is recorded. The arrows along with the y coordinates show the y-positions where lineouts for
detailed analysis are generated. The blue and red arrows represent low and high intensity regions,
respectively

present case, the filaments disturb the cylindrical symmetry making the inverse Abel
transform unreliable.

The spectral region of the measurements is chosen to consist emission lines of
two argon ion charge states, Ar III and Ar IV. This allows for electron temperature
and density determination from a single measurement. It is noted that the second
order of the Ar III and Ar IV UV-lines is recorded, since the spectrometer grating
has a higher efficiency and provides better spectral resolution in the second order.
It was verified that no first order emission lines are present in the measured spectral
window. The only contribution of the first order emission comes from continuum
radiation.

To determine the plasma parameters in the different regions, we analyze lineouts
obtained from plasma regions with significantly different emission intensities (see
Fig. 3.21). At electron densities relevant to this analysis (>1018 cm−3), the emis-
sion line shapes are dominated by Stark broadening (1.7 ≤ FWHMStark ≤ 2.6 Å),
whereas the contributions of the instrumental (∼0.5 Å) and Doppler (due to thermal
and hydrodynamic motion) (<0.3 Å) broadenings are relatively small. Therefore,
the emission lines in the measured spectra are fitted using a Lorentz distribution.

Figure3.22 presents the lineout at y = 0.2 mm for the spectral image recorded at
t = 1000 ns alongwith the best fit, obtained by varying the parameters of five Lorentz
distributions, corresponding to the transitions seen atλ=2874, 2884, 2899, 2913, and
2926 Å. The feature seen at λ = 2899 Å probably arises from the blending of several
unidentified weak transitions. It is approximated by a single, wide Lorentzian, whose
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wings contribute very little to the other transitions and therefore do not disturb their
diagnostics.

The full width at half maximum (FWHM) of each fitted Lorentzian defines the
Stark broadening of the line that is used for the ne determination. The area of each
fitted Lorentzian gives the line intensity that is used for the Te determination. The
Ar III (2Do)4s 3Do

3–(2D
o)4p 3P2 transition at λ = 2884 Å and Ar IV (3P)4s 2P3/2–

(3P)4p 2Do
5/2 transition at λ = 2913 Å are selected for the detailed analysis due

to their highest emission intensity in the observed region, and the availability of
theoretical and experimental data on their Stark broadening. These transitions are
isolated and belong to non-hydrogenlike ions. Therefore, the relation between the
FWHM and ne is linear, with proportionality constant found in [7–9] and is given by
(Eqs. 1.50 and 1.51 in Sect. 1.3.1):

�λ2884
Stark(Å) = 1.1 × 10−18 · ne(cm−3)

�λ2913
Stark(Å) = 0.7 × 10−18 · ne(cm−3)

�λStark is the full width at half maximum of the Lorentzian distribution. The theoret-
ical transition intensity ratios as a function of Te for constant densities are calculated
using a collisional-radiative (CR) code [10] and presented in Fig. 1.10.

In Fig. 3.23, the normalized spectral lineouts, obtained from Fig. 3.21b at y = 0.2
mm (corresponding to the low intensity, surrounding plasma region) and at y = −0.9
mm (corresponding to a filament) are shown together in order to demonstrate the dif-
ference in the lineshapes. The spectrum obtained from the filament have larger width
than the lines from the ambient plasma, indicating a higher average ne along the
chord at y = −0.9 mm. Another feature observed in Fig. 3.23 is that the line inten-
sity ratio Ar IV/Ar III is larger for the spectrum obtained at y = 0.2 mm indicating
a higher average Te in the surrounding plasma. The electron densities and tempera-
tures obtained from the lineouts taken at the different y-positions (see Fig. 3.21) are
presented in Table3.2. The other observed two transitions at λ = 2874 and λ = 2926
Å both belong to Ar IV and their analysis gives results that are consistent with the Ar
IV transition at λ = 2913 Å. The ne inferred from these lines are within 15% of the
ne obtained from the λ = 2913 Å transition, and their relative intensity is constant,
therefore they don’t provide additional information on the temperature.

The error estimate for ne andTe consists of two contributions: the first, accounts for
the uncertainty in the measured parameters of the line intensities and FWHM’s, and
the second accounts for the uncertainty in the theoretical calculations and published
data. For all the measured parameters the error is ∼15%. The uncertainty in the data
of the Stark broadening for both lines is ∼40%. Therefore, the total estimated error
for the ne determination from both lines is ∼55%. The uncertainty in the CR model
results used for the Te determination is commonly estimated to be ∼20%. Another
contribution to the error in the Te determination results from the uncertainty in the
ne used as an input for the CR calculations. These contributions result in a total
uncertainty of ∼30% in Te.
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Table 3.2 Summary of plasma parameters obtained from regions with low emission intensity and
high emission intensity

y-
Position
mm

FWHMArIII
Å

ne,ArIII
(cm−3)

FWHMArIV
Å

ne,ArIV
cm−3

Intensity
Ratio
Ar III/Ar
IV

Te
eV

Comments

t = 960ns

−5.3 2.1 1.9 × 1018 2.3 3.3 × 1018 1.1 4.7 Filament

−3.3 1.8 1.6 × 1018 1.8 2.5 × 1018 0.8 4.75 Ambient

−1.8 2.1 1.9 × 1018 1.9 2.7 × 1018 1.1 4.65 Filament

1.3 1.9 1.7 × 1018 1.7 2.4 × 1018 0.8 4.75 Ambient

5.8 2.1 1.9 × 1018 2.3 3.3 × 1018 1.3 4.6 Filament

t = 1000ns

−4.0 2.4 2.2 × 1018 2.6 3.7 × 1018 0.7 5 Filament

−2.4 2.3 2.1 × 1018 2 2.9 × 1018 0.4 5.2 Ambient

−0.9 2.6 2.4 × 1018 2.6 3.7 × 1018 0.5 5.2 Filament

0.2 2.2 2 × 1018 2 2.9 × 1018 0.4 5.2 Ambient

1.6 2.4 2.2 × 1018 2.3 3.3 × 1018 0.5 5.15 Filament

Fig. 3.22 Lineout at y = 0.2
mm of the spectroscopic
image recorded at t = 1000
ns, together with the best fit
obtained by varying the
parameters of five
independent Lorentzians. We
note that the second order of
Ar III and Ar IV lines are
recorded
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Table3.2 shows that, despite the rather large uncertainty in the absolute ne values,
the trend of higher densities by ∼10–20% inside the filament region in comparison
to the ambient plasma, is clear. The Te analysis shows that the filaments are regions
with slightly lower temperature than the ambient plasma. We note that due to the
integration along the line of sight for the filament regions (the lineouts of the filaments
might include also contributions from the ambient plasma), the differences in ne and
Te between the two plasma regions are even larger than those in Table3.2. Therefore,
ne andTe presented in Table3.2 for filaments constitute, respectively, lower and upper
limits.
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Fig. 3.23 Comparison of the
lineouts at y = 0.2 mm (blue
curve) and at y = −0.9 mm
(red curve, filament)
generated from the
spectroscopic image
recorded at t = 1000 ns. We
note that the second order of
Ar III and Ar IV lines are
recorded
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Chapter 4
Discussion

Themost significant result of this study is the first directmeasurement of the evolution
of the current distribution in Z-pinch with preembedded axial magnetic field (Bz0).
This result was achieved by measuring the azimuthal magnetic field (Bθ) in the
imploding plasma. In addition, the evolution and distribution of the axial magnetic
field that is compressed by an imploding plasma is measured simultaneously with the
compressing Bθ-field. These measurements revealed unexpected plasma dynamics
in Z-pinch with preembedded Bz0. While without the application of an initial Bz the
measurements show, as expected, that nearly the whole current flows through the
imploding plasma (see Fig. 3.7), when an initial Bz0 = 0.4 T is applied the measured
Bθ in the imploding plasma is much smaller than the expected value (calculated
from the total current and plasma radius, see Fig. 3.8), showing that only a small
part of the current flows in the imploding plasma. Measurements of Bθ at larger radii
show that the missing current flows at radii much larger than the outer radius of
the imploding plasma. Moreover, for the Bz0 = 0.4 T case, the value of Bθ at the
outer radius of the imploding plasma remains nearly constant (between 1.5 and 2 T)
during the implosion, indicating a decrease of current within the imploding plasma
as the implosion progresses. This loss of current explains two observations: (i) the
significantly longer implosion time and (ii) much lower Bz,stagnation than the values
predicted theoretically for Bz0 = 0.4 T, see Sect. 1.2.1 and Table 1.4. This findings
sheds light on several unexplained phenomena observed in otherZ-pinch experiments
with preembedded axial magnetic field: (i) the formation of helical structures [1, 2],
(ii) larger than predicted implosion time and plasma radius at stagnation [3, 4], (iii)
stronger than predicted mitigation of instabilities [1, 2, 5–7], and (iii) unexpectedly
strong reduction of the K-shell emission at relatively small Bz0 [5].

Figures 4.1 and 4.2 present the measured plasma radius and Bz as a function
of time for an implosion with Bz0 = 0.4 T. These measurements are compared to
different calculations based on the theory described in Sect. 1.2.1. The red curves
represent calculations of the plasma radius (Fig. 4.1) and the Bz (Fig. 4.2) evolution
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Fig. 4.1 Plasma radius as a function of time for Bz0 = 0.4 T. Black squares are the experimental
results (the plasma radius is defined as the radius of maximum emission intensity after inverse Abel
transform); red solid line—theoretical calculation assuming the whole current flows through the
imploding plasma and conservation of Bz-flux; blue solid line—theoretical calculation assuming
constant Bθ = 1.6T and conservation of Bz -flux; green solid line—theoretical calculation assuming
constant Bθ = 1.6 T and Bz0 = 0.2 T (to consider the effect of diffusion of Bz0 = 0.4 T.)

for Bz0 = 0.4 T, assuming the whole current flows through the imploding plasma and
conservation of Bz-flux. The blue curves represent similar calculations, but assuming
that the time evolution of the current flowing through the imploding plasma changes
such that the compressing Bθ remains constant and equals to 1.6 T that is the aver-
age of the measured Bθ values. The green curves represent similar calculations with
a current evolution that maintains Bθ = 1.6 T, but with an additional effect of Bz

diffusion. The effect of the diffusion of Bz out of the plasma is included by arti-
ficially reducing the magnitude of the initial Bz by 50% (Bz0 = 0.2 T), according
to the measured confinement efficiency of the plasma. Comparing the theoretical
calculations with the experimental results we see that the red curves differ signifi-
cantly from the measurements: the calculated implosion time is ∼14% shorter and
Bz,stagnation is more than 5× larger then observed. When a constant Bθ of 1.6 T is
assumed and Bz0 = 0.4 T, represented by the blue curves, the calculated implosion
time is improved, but the predicted plasma radius at stagnation is 2× larger than the
measured value, and the predicted Bz,stagnation is∼2 times smaller than the measured
value. In the third model, where the effect of Bz diffusion is considered, represented
by the green curves, both, the predicted implosion time and radius at stagnation
are closer to the measured values, as well as the evolution of Bz near stagnation,
supporting the choice of the model. However, also this latter model fails to accu-
rately describe the measured plasma radius evolution during the implosion stage.
This difference suggests that the simplified theory used here to describe the plasma
dynamics and the evolution of Bz is not sufficiently accurate. A better description
would requires a much more complicated model that will take into account the Bz

diffusion and modifications to the current flowing through the imploding plasma.
The measurements of Bθ, Bz , and tstagnation show that the application of initial

Bz significantly affects the current distribution in the plasma, such that most of the
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Fig. 4.2 Bz as a function of time for Bz0 = 0.4 T. Black squares are the experimental results (Bz
is measured at z = 3 mm on the symmetry axis); red solid line—theoretical calculation assuming
whole current flows through the imploding plasma and conservation of Bz-flux; blue solid line—
theoretical calculations assuming constant Bθ = 1.6 T and conservation of Bz-flux; green solid
line—theoretical calculations assuming constant Bθ = 1.6 T and Bz0 = 0.2 T (to consider the
effect of diffusion of Bz0 = 0.4 T

current flows at radii larger than the radius of the imploding main plasma. Recent
measurements [3] (not presented here) show the existence of a low-density peripheral
plasma (1016 < ne < 1017 cm−3 compared to ∼1018 cm−3 of the dense imploding
plasma) residing at 20 < r < 28 mm that carries a significant part of the current.
We found a two sources for this low-density peripheral plasma. The first source is
the gas-load atoms that expanded to radii larger than R0 = 19 mm either due to the
backscattering from the cathode or due to the expansion of the boundary layers, and
are not swept by the main plasma implosion. The second source is atoms (mainly
hydrogen, carbon and oxygen atoms) that were absorbed on the electrodes prior to
the discharge or emitted from the plastic housing of the Helmholtz coils during the
discharge. This low-density plasma at large radii exists also when the initial Bz is
not applied. However, when Bz0 = 0 it has lower electron density and temperature
(ne < 1016 cm−3, Te < 1.5 eV), consistent with the absence of the current there.

To explain this phenomenon of the current re-distribution from the dense implod-
ing plasma to the low-density peripheral plasma when external Bz is applied, we
propose a simplified model based on the development of a force-free current in the
low-density plasma. In the model we employ planar geometry and consider plasma
in constant and uniform external electric �E = Ez ẑ, and magnetic �B = Bθθ̂ + Bz ẑ
fields. Note, that although the considered geometry is planar, for convenience we
use cylindrical coordinates notation, whereas the equivalence between the coordi-
nate systems is the following: r̂ = x̂ , θ̂ = ŷ, and ẑ = ẑ. To find the evolution of the
plasma velocity and the current density we solve a simplified version of the equation
of motion Eq. 1.10, and the generalized Ohm law Eq. 1.4:
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d �v
dt

= �j × �B
ρ

(4.1)

d �j
dt

= νei

η

( �E + �v × �B
)

− νei �j − ωce

�j × �B
| �B| (4.2)

with initial conditions: �v(t = 0) = 0 and �j(t = 0) = 0, �v is the plasma velocity,
�j is the current density, ρ is the plasma mass density, νei is electron-ion collision
frequency, η is the plasma resistivity, and ωce is the electron cyclotron frequency.
In Eqs. 4.1 and 4.2 the pressure terms are omitted since in the low-density plasma
residing at large radii the magnetic pressure is much larger than the thermal pressure
(β ∼ 0.1) and the spatial gradients of the density and temperature are small (see [3]).

Equations 4.1 and 4.2 can be solved analytically as shown in AppendixA.1. This
solution shows that the current density and plasma velocity reach steady state values
given by:

jz = Ez

η

B2
z

B2
z + B2

θ

jθ = Ez

η

Bz Bθ

B2
z + B2

θ

�v = �E × �B
| �B|2 = Ez Bθ

B2
z + B2

θ

r̂ (4.3)

on a time-scale:
τsteady = νei

ωceωci
(4.4)

Using the plasma parameters 1016 ≤ ne ≤ 1017 cm−3 and Te ∼ 5 eV, and the mag-
netic field B ≈ 2 T, typical for the low-density plasma [3], τsteady is ∼15 ns. This
time is much shorter than the implosion time (few hundred ns). Therefore, the steady
state solution given by Eq. 4.3 might be valid in the low-density plasma. An inter-
esting prediction of this solution is a development of an azimuthal current density
jθ in the low-density plasma. This current might generate an additional Bz-flux in
the region of the dense imploding plasma, thereby, affecting the imploding plasma
dynamics and the development of instabilities. Further measurements are required
to check this prediction of Bz enhancement.

An insightful approach to the steady state solution of the model is to calculate the
electric field (using Galileo transformation) in the rest frame of the plasma moving
with the drift velocity given in Eq. 4.3:

�Epl = �Elab + �v × �B = �Elab + �Elab × �B
| �B|2 × �B = �Elab + 1

| �B|2 (( �Elab · �B) �B − | �B|2 �Elab) =

= ( �Elab · �B) �B
| �B|2 (4.5)

where �Epl and �Elab are the electric fields in the rest frame of the plasma and labora-
tory, respectively. FromEq. 4.5we see that the electric field in the rest frameof plasma
is zerowhen �Elab is perpendicular to �B as in the classical Z-pinch configuration.How-
ever, when external axial magnetic field is applied, �Epl = (Ez,lab · Bz) �B/| �B|2 �= 0.



4 Discussion 77

Using generalized Ohm’s law (Eq. 1.4) we see that for the case �Elab ⊥ �B, the current
in a plasma moving at the drift velocity can be driven only by spatial gradients in
the plasma parameters. An estimate of the current in the low-density plasma due to
the spatial gradients in ne and Te shows that it is very small compared to the total
current,therefore, when Bz0 = 0 the entire current can flow in the imploding dense
plasma. On the other hand, if Bz0 > 0, then �Epl �= 0, allowing current to flow in the
low-density plasma with current densities given by Eq. 4.3.

Another observation we discuss here in the context of this model is the slow or
non implosion of the low-density plasma, although it carries up to ∼50–80% of the
total current. One would expect that such current should accelerate the low-density
plasma to relatively large implosionvelocity due to theLorentz force ( �j × �B) directed
inward. The question is, whether the implosion time of the low-density plasma is
large or small compared to the implosion time of the dense plasma (few hundreds
ns). If it is small, then the low-density plasma that carries part of the current would
reach the dense plasma in contradiction to our observation. To estimate the inward
motion of the low-density plasma we use radial velocity equation 4.3 that gives
vr ∼ 7.5 × 105 cm/s. For calculating vr , we estimate Ez using the expression for
jz of Eq. 4.3 and assuming a uniform current distribution in 20 < r < 28 mm, and
Spitzer’s resistivity (Eq. 1.5). We also used Bz ∼ Bθ ∼ 1, here Bz > Bz0 due to
possible enhancement of Bz by jθ flow in the low-density plasma. The estimated
vr ∼ 7.5 × 105 cm/s of the low-density plasma is much smaller than the average
implosion velocity∼3 × 106 cm/s of the dense plasma therefore, consistent with the
observation. It is important to point out that even if the presented model is not valid,
the estimate of the Lorentz force and the the resulting implosion of the low-density
plasma predicts that on the time scale of the implosion the radial displacement of
the low-density plasma is small relatively to its initial radius. For the estimate of
the low-density velocity we use the following plasma parameters: Ildp = 100 kA,
20 ≤ rldp ≤ 28 mm, and ni,carbon ≈ 3 × 1016 cm−3. Assuming a uniform current
distribution, the current density in the low-density plasma is jldp ≈ 8 × 107 A/m2.
The average Bθ in the low-density plasma for the total current ∼200 kA is ∼1.5 T.
Therefore, the inward acceleration is:

aldp ∼ jldp · Bθ

ni,carbon · mC
= 2 × 1011 (m/s2) (4.6)

where mC is the mass of a carbon atom. The radial displacement of the low-density
plasma in 100 ns is �r ∼ at2/2 = 1 mm. Therefore, the low-density plasma will
implode by∼4 mm during the time of the current re-distribution (∼400 ns before the
stagnation). This radial displacement is small compared to the initial radius of the low-
density plasma (∼25 mm), consistent with the observation. In future experiments we
plan to measure the current distribution in the low-density plasma in order to verify
our estimate.

It is important to note that this simplified model is not applicable to the dense
imploding plasma due to following three reasons: (i) the magnetic field is mostly self
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generated and not external; (ii) assumption of constant �E and �B is not valid since,
for the plasma parameters and magnetic field of the imploding plasma, τsteady ∼
timplosion ; and (iii) the pressure terms in the Eqs. 1.10 and 1.4 can not be neglected.

We point out that the model discussed here does not includeMaxwell’s equations,
i.e. the B-field diffusion processes (through Faraday’s law, Eq. 1.2) and the self
fields (through Ampere’s law, Eq. 1.3). Although, the neglect of these processes
is not justified for the parameters of the low-density plasma, the tendency of the
plasma to establish force-free configurations will not change with the inclusion of the
Maxwell’s equations as shown in [8, 9]. However, the time to reach steady statemight
be affected. To test the validity of this simplified model for describing the governing
physics, three-dimensional modeling involving processes beyond resistiveMHD (for
example, the Hall term in generalized Ohm’s law) is required. Such simulations of
the Z-pinch implosion with preembedded axial magnetic field have been recently
published [10, 11] that demonstrate the importance of the low-density plasma for
the current distribution and the development of instabilities in the imploding plasma.

Besides the model presented above, it is also useful to consider the dynamics
of the electrons in constant and uniform electric and magnetic fields without the
ion dynamics. This treatment might be relevant for times prior to the force-free
configuration establishment (see [12], Chap. 3.1 ).

The planar solution for a collisionless electron in �E = (0, 0, Ez) and �B =
(0, By, Bz) is derived in AppendixA.2 giving the guiding center velocity:

�vgc = −
(

Ez By

B2
y + B2

z

,
Ez Bz

B2
y + B2

z

ω(y)
ce · t, Ez Bz

B2
y + B2

z

ω(z)
ce · t

)
(4.7)

where ω
(y)
ce ≡ eBy/me, ω(z)

ce ≡ eBz/me.
The planar steady state solution for collisional electrons in �E = (0, 0, Ez) and�B = (0, By, Bz) is derived in AppendixA.2 giving the guiding center velocity:
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(4.8)
where vdri f t ≡ eEz/(meνei ).

Both solutions show that application of Bz aligned with the external electric field,
increases the transport of electrons in the ẑ-direction. We see from Eq. 4.8 that the
parameter defining the electron transport in the problem with collisional electrons is
the ratio of the electron gyro-frequency (ωce ≈ 1.76 × 1011 · B(T)) to the electron-
ion collision frequency (νei , see Eq. 1.6) as explained in AppendixA.2.

To demonstrate the effect of Bθ on the electrons velocity in ẑ-direction in the
low-density plasma, we estimate this ratio for implosion without axial magnetic
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field using the following plasma parameters and current [13]: ne,ldp ∼ few × 1015

cm−3, Te,ldp ∼ 1 eV, rldp ∼ 24mm, and I ∼ 150 kA. These parameters give: Bθ(r =
rldp) = 1.25T,ωce ≈ 2.2 × 1011 rad/s, and νei ≈ 4 × 1010. s−1 that result in ratio ∼
5.5. As can be seen from AppendixA.3, for ratio 	 1, vgc,z ≈ ratio−2 · vdri f t 

vdri f t . We see that in implosions without Bz , electrons in the low-density plasma
are magnetized and according to the considered problem should carry only a small
portion of the current perpendicular to Bθ, in comparison to the dense imploding
plasma (ratio ∼ 0.1 leading to vgc,z ≈ vdri f t ).
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Chapter 5
Conclusions

The compression of a plasma with a preembedded axial magnetic field by a Z-pinch
implosion and the effects of the compressed field on the plasma implosion and stag-
nation have been investigated by spectroscopy, 2D imaging, and interferometry. The
investigation includes the evolution and spacial distribution of plasma key parameters
and magnetic fields.

We report the first measurements of the evolution and distribution of the axial and
azimuthal magnetic fields in Z-pinch implosion with preembedded axial B-field. The
two fields are measured simultaneously. The measurements of Bz and Bθ employ a
novel technique based on the polarization properties of theZeeman split emission. For
the Bz determination we used the π and σ Zeeman components of the emission from
a laser-generated aluminum dopant, and for the Bθ determination we used the σ+ and
σ− Zeeman components of the emission from the imploding argon plasma. This first
reliable measurement of the compressing and compressed B-fields, together with
the simultaneous measurement of the plasma radius and discharge current enables
us to study the implosion dynamics, pressure balance, current distribution, and Bz

distribution.
One of the main (and surprising) result, obtained for implosion with Bz , is that

the measured Bθ was much smaller than the expected Bθ, calculated using the total
discharge current and the plasma radius. For example, close to stagnation the mea-
sured Bθ is a factor of 5 lower than the expected value. We showed that indeed the
presence of Bz causes most of the axial current to flow outside the imploding plasma
shell, through a low-density peripheral plasma present at large radii. Moreover, as
the implosion progresses, a larger fraction of the axial current flows outside the main
plasma, resulting in Bθ that is almost constant (∼2 T for Bz0 = 0.4 T) in spite of
the implosion. In addition, it was found that, nevertheless the low-density plasma
carries a large fraction of the current, it practically doesn’t implode on the time scale
of the dense plasma implosion. To explain these phenomena we suggested a sim-
plified theory based on the development of a force-free current in the low-density
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plasma. The loss of current and the development of a force-free configuration can also
explain different unexpected phenomena observed in other Z-pinch experiments with
preembedded axial magnetic field (for more information see [1] and Sect. 4). The
detailed data obtained in the present study is currently used for testing MHD codes
through the collaboration with plasma groups at the Naval Research Laboratory, the
University of Washington, and the University of Rochester.

Simultaneous measurements of Bz and Bθ at times close to stagnation demon-
strate the effect of the plasma inertia on the Bz compression. When the magnetic
pressures become equal (i.e. Bz ≈ Bθ), the imploding plasma shell still possesses an
appreciable inward velocity, further compressing Bz to a value about 3× higher than
Bθ. This “overshoot” of Bz compression is expected from theoretical calculations
presented in Sects. 1.2.1 and 4.

Knowledge of the compression factor (defined by Bz,stagnation/Bz0), together with
the initial and final radii of the plasma, allows for estimating the Bz confinement effi-
ciency relative to a theoretical confinement by an ideal (zero-resistivity) plasma. For
the case of Bz0 = 0.4 T, the measurements show 50 ± 25% confinement efficiency
for the studied plasma implosion. This result is important for theoretical studies of
the B-field diffusion mechanism in plasmas.

The spatially resolved measurements of the axial magnetic field allowed for
studying the Bz axial distribution. These measurements revealed an interesting phe-
nomenon of a strong axial gradient of Bz , in which the field near the anode (z ∼ 1
mm) is a factor of∼2 lower than in themiddle of the plasma column (z ∼ 5mm). This
result shows the existence of a transition region close to the anode, where the axial
magnetic field lines embedded in the metal at t = 0 remain frozen in the metal, while
the magnetic field lines in the plasma near the anode bend as the plasma implodes.
This observation should help to understand the effects of the electrodes on the plasma
dynamics and on the Bz-field evolution and distribution.

Another important part of the research was the investigation of the effects of
the preembedded axial magnetic field on the development of magneto-Rayleigh-
Taylor instability (MRTI) during the implosion, that are known to bear fundamental
importance for the implosion. The analysis of the 2D images and interferograms
showed that the presence of an axial magnetic field results in a significant mitigation
of the MRTI growth. Furthermore, we observed a rise in the MRTI wavelength for
larger Bz0, indicating the existence of a restoring force that tends to prevent the
bending of axial B-field lines.

In the present work we also observed another type of instability that appears
as axially directed filaments in the plasma (see Fig. 3.20b) which is probably an
electro-thermal instability [2, 3]. To investigate this type of instability, the electron
densities and temperatures were measured in the generated plasma filaments as well
as in the ambient plasma. It was found that the filaments are plasma regions with
higher electron density by at least 10–20% relative to the ambient plasma, and that
the electron temperature of the filaments is slightly lower (by a few percent) than
the temperature of the ambient plasma. These findings lay the basis for a theoretical
research on this type of instabilities,which is beyond the scope of the present research.
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Appendix

A.1 Development of the Force-Free Configuration

Here, we present an analytical solution for the current density and plasma velocity
evolution. The analytical solution is made possible in a framework of a simplified
model of small β plasma in uniform and constant magnetic �B = (0, Bθ, Bz), and
electric �E = (0, 0, Ez) fields. Since the B-field is constant, the Faraday equation,
∇ × �E = − ∂ �B

∂t , is not included. The time scales we derive here are consistent with
our conjecture to explain the experimental results. It is emphasized that to obtain
a more accurate result for the evolution of jz and jθ distributions in the LDP, one
should also consider the self-induced fields and the plasma velocity distribution,
which requires numerical modeling. However, it was shown that the inclusion of
these effects do not change the tendency of the system to establish a force-free
configuration [1, 2] (but might affect the time scale to reach it).

Here, we show the derivation of the current evolution using assumptions described
earlier. Since β � 1, pressure terms are omitted from the equations of motion (Eq.
A.1) and current evolution (Eq. A.2). In addition, terms of the order Zme

Mi
and non-

linear terms are neglected in Eq. A.2:

d �v
dt

= �j × �B
ρ

(A.1)

d �j
dt

= νei

η
( �E + �v × �B) − νei �j − ωce

�j × �B
B

(A.2)

Since the plasma has a finite extent in the r -direction, with vacuum boundary con-
dition at either side of the plasma, the current density, jr , creates charge separation
that in turn generates a radial electrical field (Eq. A.3). In θ̂ and ẑ directions no
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such charge separation occurs (in the θ̂ direction—due to symmetry, and in the ẑ
direction—due to the electrodes at the plasma ends).

Er = − 1

ε0

∫ t

0
jr (t

′)dt ′ (A.3)

Differentiating Eq. A.2 gives Eq. A.4 and

d2 �j
dt2

= νei

η

(d �E
dt

+ d �v
dt

× �B
)

− νei
d �j
dt

− ωce

B

d �j
dt

× �B (A.4)

Substituting Eqs. A.1 and A.3 into Eq. A.4 gives:

d2 �j
dt2

= νei

η

( ( �j × �B) × �B
ρ

− �j · r̂
ε0

)
− νei
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Assuming j ∝ est , Eq. A.5 gives:
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(A.6)
Assuming s � νei , the s2 terms can be neglected. For a non-trivial solution for

Eq. A.6, it is required that determinant of the matrix is equal to zero:
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ε0

)
s + σ2

ρ2
B4 + σ2

ρε0
B2

)
= 0 (A.7)

where σ = 1/η = nee2

νeime
. Using ωce = eB

me
, ωci = ZeB

A·mamu
, ωpl = nee2

meε0
, Eq. A.7

becomes

s

((
1 + ω2

ce

ν2
ei

)
s2 +

(
2
ωceωci

νei
+ ω2

pl

νei

)
s + ω2

ceω
2
ci

ν2
ei

+ ωceωciω
2
pl

ν2
ei

)
= 0 (A.8)

The roots are:

s0 = 0,

s1,2 =
−

(
2ωceωci

νei
+ ω2

pl

νei

)
±

√
ω4
pl

ν2
ei

− 4ω4
ceω

2
ci

ν4
ei

− 4
ω3
ceωciω

2
pl

ν4
ei

2

(
1 + ω2

ce

ν2
ei

) (A.9)
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For the plasma andmagnetic field parameters relevant to our experiments (1016 <
ne < 1017 cm−3, Te ∼ 5 eV, B ∼ 1 T): ωpl � ωce � ωci . The roots can then be
approximated by:

s1 = −ωceωci

νei
,

s2 = ωceωci

νei

1 − ω2
ce

ν2
ei

+ ω2
pl

ωceωci

1 + ω2
ce

ν2
ei

(A.10)

�j that corresponds to root s0 is a force-free configuration geometry (0, jθ, jθ
Bz

Bθ
).

Besides s0, the time scale of 1/s1 is the slowest, and determines the time scale for
establishing the force-free configuration. For our LDP parameters s1 ≈ 10 − 30 ns,
which is more than an order of magnitude smaller than the implosion time. We note
that s1 is the only root (besides s0) consistent with the assumption of s � νei , i.e
the derivation provides an accurate result for s1, but it is not valid for s2. However,
since we are interested in the slowest time scale, this derivation provides an accurate
result.

We also note that retaining the s2 term in Eq. A.6 and solving numerically the
determinant polynomial give the following roots when ωpl � ωce:

s̃0 = 0

s̃1 ≈ −ωceωci

νei
;

s̃2,3 ≈ −νei ;
s̃4,5 ≈ −νei

2
± iωpl;

(A.11)

As expected s1 is not changed.
After finding the roots s, the general solution for �j(t) can be written in the fol-

lowing form:

�j = A0V̂0e
s0t + A1V̂1e

s1t + A2V̂2e
s2t + A3V̂3e

s3t + A4V̂4e
s4t + A5V̂5e

s5t (A.12)

where V̂0, V̂1, V̂2, V̂3, V̂4, and V̂5 are the eigenvectors of the matrix in Eq. A.6
corresponding to the roots s0, s1, s2, s3, s4, and s5, respectively. These eigenvectors
are:

V̂0 =
⎡
⎢⎣

0
1√
2
1√
2

⎤
⎥⎦ V̂1 =

⎡
⎢⎣

0
−1√
2
1√
2

⎤
⎥⎦ V̂2 =

⎡
⎢⎣

0
−1√
2
1√
2

⎤
⎥⎦ V̂3 =

⎡
⎢⎣

0
1√
2
1√
2

⎤
⎥⎦ V̂4 =

⎡
⎣1
0
0

⎤
⎦ V̂5 =

⎡
⎣1
0
0

⎤
⎦

(A.13)
The coefficients A0, A1, A2, A3, A4, and A5 are found from the initial conditions �j(t =
0) and d �j

dt (t = 0). In practice the known initial parameters are �j(t = 0) and �v(t = 0),
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then d �j
dt (t = 0) can be found using Eq. A.2. The evolution of plasma velocity is then

calculated by the time integration of Eq. A.1 and using the solution for the current
density evolution (Eq. A.12).

As can be seen from Eq. A.11 the real parts of the roots are either negative
or zero, which means that the current evolution given by the Eq. A.12 converges
asymptotically to a steady state solution. The steady state solution is defined by the

A0 coefficient and can be found by taking d �v
dt and

d �j
dt in Eqs. A.1 and A.2 to be zero:

�jsteady =
⎡
⎢⎣

0
Ez

η
Bz Bθ

B2
z +B2

θ

Ez

η

B2
z

B2
z +B2

θ

⎤
⎥⎦ �vsteady =

⎡
⎣

Ez Bθ

B2
z +B2

θ

0
0

⎤
⎦ (A.14)

A.2 Electron Motion in Constant Electric and Magnetic
Fields Without Collisions: General Solution

Like inAppendixA.3, also here the cylindrical geometry of the experiment is approx-
imated by a planar geometry (see Appendix A.3 for more details).

The equation ofmotion of an electron in collisionless plasma subjected to constant
magnetic �B = (0, By, Bz) and electric �E = (0, 0, Ez) fields is:

me
dvx
dt

= −evy Bz + evz By (A.15a)

me
dvy
dt

= evx Bz (A.15b)

me
dvz
dt

= −eEz − evx By (A.15c)

The time derivative of both sides of Eq. A.15a and using Eqs. A.15b and A.15c
gives:

d2vx

dt2
= − e

me

dvy
dt

Bz + e

me

dvz
dt

By = − e2

m2
e

(B2
y + B2

z )vx − e2

m2
e

Ez By (A.16)

The solution of Eq. A.16 is:

vx = A sin
( e

m

√
B2
y + B2

z t + φ
)

− Ez
By

B2
y + B2

z

(A.17)

Equations A.15b and A.15c can be solved after substitution of the solution for vx
(see Eq. A.17):
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vy = −A
Bz√

B2
y + B2

z

cos
( e

m

√
B2
y + B2

z t + φ
)

− eEz

me

By Bz

B2
y + B2

z

t + C (A.18)

vz = A
By√

B2
y + B2

z

cos
( e

m

√
B2
y + B2

z t + φ
)

− eEz

me

B2
z

B2
y + B2

z

t + D (A.19)

By substitution of vx , vy , and vz solutions into Eq. A.15a, the relation between
the integration constants C and D is found: C

D = By

Bz
.

Therefore, the set of solutions of Eqs. A.15a–A.15c is:

vx = A sin
( e

m

√
B2
y + B2

z t + φ
)

− Ez
By

B2
y + B2

z

(A.20a)

vy = −A
Bz√

B2
y + B2

z

cos
( e

m

√
B2
y + B2

z t + φ
)

− eEz

me

By Bz

B2
y + B2

z

t + C (A.20b)

vz = A
By√

B2
y + B2

z

cos
( e

m

√
B2
y + B2

z t + φ
)

− eEz

me

B2
z

B2
y + B2

z

t + C
Bz

By
(A.20c)

The constants A, φ, and C are determined from the initial velocity of the electron.
For example, in the case of an electron starting from rest, �v = 0, the constants

are: A = Ez
By

B2
y+B2

z
, φ = π

2 , C = 0 and the full solution is:

vx = Ez
By

B2
y + B2

z

(
cos

(
e

m

√
B2
y + B2

z t

)
− 1

)
= −2Ez

By

B2
y + B2

z
sin2

(
e

2m

√
B2
y + B2

z t

)

(A.21a)

vy = Ez
By Bz

(B2
y + B2

z )
3/2

sin

(
e

m

√
B2
y + B2

z t

)
− eEz

me

By Bz

B2
y + B2

z
t (A.21b)

vz = −Ez
B2
y

(B2
y + B2

z )
3/2

sin

(
e

m

√
B2
y + B2

z t

)
− eEz

me

B2
z

B2
y + B2

z
t (A.21c)

By time averaging the Eqs. A.21a–A.21c we obtain the guiding center velocity:

vx = −Ez
By

B2
y + B2

z

(A.22a)

vy = −By
eEz

me

Bz

B2
y + B2

z

t (A.22b)

vz = −Bz
eEz

me

Bz

B2
y + B2

z

t (A.22c)
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From expressions (A.22b) and (A.22c) it is seen that the projected electron velocity
on the yz plane is in the direction of the magnetic field.

It is important to note that the calculations presented here are not self-consistent
since the magnetic field generated by the considered electrons is not taken into
account. The electrons are in the externally generated electric and magnetic fields,
and the magnetic field they produce is small in comparison to the external fields.
This case is applicable for the initial stage of the implosion with Bz0 = 0.4 T, when a
small part of the total current is flowing through the low-density plasma, such that Bθ

is generated externally by the main current flowing in the imploding dense plasma
and Bz is generated by the Helmholtz coils.

A.3 Electron Motion in Constant Electric and Magnetic
Fields with Collisions: Steady State Solution

In order to obtain an analytical solution to the problem of electron motion in constant
electric and magnetic fields we approximate the cylindrical geometry of the experi-
mental setup by a planar geometry, where Bθ is replaced by By and the r -coordinate
of the cylindrical geometry is in the x direction of the planar geometry. This approx-
imation is valid to describe electron dynamics if the plasma radius is much bigger
than the electron gyro-radius.

The equation of motion of electrons in collisional plasma subjected to constant
magnetic �B = (0, By, Bz) and electric �E = (0, 0, Ez) fields is:

me
dvx
dt

= −evy Bz + evz By − mevxνei (A.23a)

me
dvy
dt

= evx Bz − mevyνei (A.23b)

me
dvz
dt

= −eEz − evx By − mevzνei (A.23c)

where e is the elementary charge, νei is electron-ion collision frequency and �v =
(vx , vy, vz) is the electron velocity.

In steady state d �v
dt = 0, therefore Eq. A.23 become:

0 = −evy Bz + evz By − mevxνei (A.24a)

0 = evx Bz − mevyνei ⇒ vy = evx Bz

meνei
= ω(z)

ce

νei
vx (A.24b)

0 = −eEz − evx By − mevzνei ⇒ vz = −eEz + evx By

meνei
= −vdri f t − ω

(y)
ce

νei
vx

(A.24c)



Appendix 91

where ω
(y)
ce ≡ eBy

me
, ω(z)

ce ≡ eBz

me
, and vdri f t ≡ eEz

meνei
. vdri f t is the electron drift velocity

without magnetic field or in collisional-dominated plasma (i.e. νei � ωce).

Substituting vy = ω(z)
ce

νei
vx and vz = −vdri f t − ω

(y)
ce

νei
vx into Eq. A.24a we obtain:

vx = −
ω
(y)
ce

νei
vdri f t

1 +
(
(ω

(y)
ce )2+(ω(z)

ce )2

ν2
ei

) (A.25)

By substitution of vx solution (Eq. A.25) into Eqs. A.24b and A.24c the expres-
sions for vy and vz are found:

vy = −
ω
(y)
ce ω(z)

ce

ν2
ei

vdri f t

1 +
(
(ω

(y)
ce )2+(ω(z)

ce )2

ν2
ei

) (A.26)

vz = −

(
1 +

(
ω(z)
ce

νei

)2
)
vdri f t

1 +
(
(ω

(y)
ce )2+(ω(z)

ce )2

ν2
ei

) (A.27)

For implosion with Bz0 = 0 (i.e. ω(z)
ce = 0) and using Eq. A.27 we see that if

ω
(y)
ce � νei (equivalent to small ne and large By) then vz ≈

(
νei
ω
(y)
ce

)2
vdri f t � vdri f t .

Such conditions might be relevant for the electrons of the low-density plasma in
implosions with Bz0 = 0. For implosion with Bz0 > 0 and νei � ω

(y)
ce ,ω(z)

ce , Eq. A.27

gives: vz ≈ −vdri f t
B2
z

B2
y+B2

z
. Such conditions might be relevant for the electrons of the

low-density plasma in implosions with Bz0 = 0.4 T at the early times of the current
flow in the low-density plasma (see Chap.4).
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