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ABSTRACT

Recent diagnostic advances in gas-puff Z pinches at the Weizmann Institute for the first time allow the reconstruction of the current flow as
a function of time and radius. These experiments show an unexpected radially outward motion of the current channel, as the plasma moves
radially inward [C. Stollberg, “Investigation of a small-scale self-compressing plasma column,” Ph.D. thesis (Weizmann Institute, 2019)]. In
this paper, a mechanism that could explain this current evolution is described. We examine the impact of advection on the distribution of
current in a cylindrically symmetric plasma. In the case of metric compression, jvr j / r, the current enclosed between each plasma fluid ele-
ment and the axis is conserved, and so the current profile maintains its shape. We show that for more general velocity profiles, this simple
behavior quickly breaks down, allowing for nonconservation of current in a compressing conductor, rapid redistribution of the current den-
sity, and even for the formation of reverse currents. In particular, a specific inward radial velocity profile is shown to result in radially out-
ward motion of the current channel, recovering the surprising current evolution discovered at the Weizmann Institute.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118668

I. INTRODUCTION

For many years, Z pinch experiments had limited diagnostic
capability. These limitations were particularly pronounced for the
magnetic field diagnostics, where it was only possible to track the total
current flowing through the system. Recently, the development of
spectroscopic diagnostics based on Zeeman splitting has enabled the
reconstruction of temporally and radially resolved magnetic field pro-
files, thus yielding the evolution of the current density distribution
during implosion1 and stagnation.2

Davara et al.1 confirmed that during the implosion phase of a fast
Z pinch, the entire current flows through the compressing plasma and
obeys the normal diffusion assuming Spitzer resistivity. A very differ-
ent result was found during stagnation by Rosenzweig et al.2 Here, the
proportion of current flowing through the stagnating plasma was at
most a few percent. This finding agrees with the results reported in
Ref. 3, where it was shown that in significantly disparate experiments,
the magnetic field effect on the pressure and energy balance at stagna-
tion is negligible, leading to the conclusion that at most 1/3 of the load
current flows in the stagnating plasma.

A recent spectroscopic investigation4 on a different Z pinch experi-
ment, also performed with unprecedented spatial and temporal resolu-
tion throughout implosion and stagnation, verified the previous results,

which held over most of the axial length of the pinch. However, in this
study, a remarkable phenomenon was found in the column portion
near the cathode. While at the beginning of the stagnation, most of the
current flowed within the small radius of the stagnating plasma, the cur-
rent quickly escaped to a much larger radius as the stagnating plasma
continued to compress. This effect was not seen in the rest of the plasma
column; at those positions, the current was never observed to penetrate
to small radii, consistent with the conclusions in Refs. 2 and 3. In order
to interpret these experimental results, it is critical to understand the
behavior of the current distribution during a plasma implosion.

In a cylindrically symmetric system, where for all quantities
@=@h ¼ @=@z ¼ 0, the field evolution consists of two parts: resistive
diffusion and magnetic induction. Historically, the theoretical focus
has been on the former. For instance, one of the more successful theo-
retical predictions of the current distribution in a Z pinch is the inverse
skin effect,5,6 a purely resistive effect that assumes no plasma motion.
In essence, the calculation showed that the only resistive solution con-
sistent with a decreasing total current in the conductor was one with
an inverse current running at the boundary. Although such a model is
sufficient and highly successful for plasmas where the resistive diffu-
sion dwarfs the induction, as experiments grow hotter and faster, the
induction effects will eventually dominate.
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In cases where the induction effects have been examined, they are
often in the context of specific shock solutions and the change in field
across the shock.7 However, in hot systems and systems with finite
resistivity, the current channel is likely to be less localized, and thus
examining the effects of induction for more extended velocity profiles
is necessary.

There is an intuitive notion of how a current channel compresses,
which is based on the case of metric compression, where vr / r. In
this case, the divergence of the velocity is constant within the cylinder.
Everywhere, conservation of mass implies that the density increases
according to nðtÞ ¼ nð0ÞðRð0Þ=RðtÞÞ2, and conservation of magnetic
flux implies that the magnetic field increases according to
BðtÞ ¼ Bð0ÞðRð0Þ=RðtÞÞ. Because I / rB, the magnetic field evolution
implies that the enclosed current at any given point is a conserved
quantity as well, dI=dt¼ 0. Thus, the current channel smoothly com-
presses, maintaining its shape and conserving the total current.

In this paper, we show that for more general velocity profiles, this
intuition quickly breaks down. Flux conservation does not in general
imply conservation of the total current, and the induction equation
thus allows for rapid redistribution of the current density and for the
formation of reverse currents.

In Sec. II, we rewrite the induction equation in terms of the
enclosed current, showing how it takes a special form in the case of
metric compression that leads to current conservation. By considering
power-law velocity profiles, we show how metric compression pro-
vides a natural boundary between regions of increasing and decreasing
enclosed current. We solve the induction equation analytically for the
case of a compressing, bounded conductor, showing how a nonuni-
formly contracting conductor does not have a conserved global cur-
rent. In Sec. III, we exploit the conserved quantity, the magnetic flux,
to easily find numerical solutions for more complex velocity profiles
and use our intuition from the analytical solutions to understand the
redistribution of the current channel in several experimentally relevant
scenarios. In Sec. IV, we compare our results to the Weizmann experi-
ment, demonstrating qualitative agreement for the current channel
expansion and recontraction. In Sec. V, we further show that the
observed behavior of the current channel cannot be explained by the
historically successful model of Haines, which considers only the resis-
tive evolution of the field, neglecting the plasma motion. Finally, in
Sec. VI, we discuss useful observables with which future experiments
can more quantitatively distinguish resistive and advective effects.

II. CURRENT PROFILE EVOLUTION IN IDEAL MHD

Wemodel the pinch as a cylindrically symmetric ideal (supercon-
ducting) plasma. In ideal MHD, the magnetic field evolves according
to the induction equation,

@B
@t
¼ r� ðve � BÞ: (1)

The relevant velocity here is the electron velocity ve, whereas the rele-
vant dynamical velocity v in MHD is mass-weighted. Throughout this
paper, we will assume that the various species (electrons, ions, and
neutrals) are collisionally equilibrated, which requires the timescales of
momentum equilibration to be much shorter than the dynamical
timescales of the implosions considered. Then ve � v to high preci-
sion, and the frozen-in law holds even in the presence of ionization
events.

With this assumption, in cylindrical coordinates, Eq. (1) becomes

@Bh

@t
¼ r� ðvrBhẑÞ½ �h; (2)

¼ � @

@r
vrBhð Þ: (3)

We can relate this magnetic field to the current contained within
a cylinder of radius r, IðrÞ ¼ 2p

Ð r
0 rjzðrÞdr, by Ampère’s law,

l0IðrÞ ¼ 2prBhðrÞ: (4)

By taking a partial derivative with respect to time and inserting Eq.
(3), we find

dI
dt
� @I
@t
þ vr

@I
@r
¼ �Ir @

@r
vr
r

� �
: (5)

Although this is just a recasting of the induction equation in
terms of the enclosed current, it says something fairly unintuitive:
although magnetic field lines are advected along with the plasma, the
current is, in general, not. The reason that this is unintuitive is that
intuitions about how the current evolves are often formed by consider-
ing “self-similar” or “metric” compression, where the divergence of
the velocity is uniform across the plasma. This metric compression is
given by

vr;met � v0
r
a0

� �
; (6)

indeed, this is the form chosen for the velocity by Haines5 when he
extends his analysis to a compressing conductor. But when vr is given
by Eq. (6), the term on the RHS of Eq. (5) disappears.

This disappearance has two implications. First, during metric
compression, the current density is advected with the velocity. Second,
during nonmetric compression, there are additional effects on the cur-
rent evolution, which cannot be understood within the normal intui-
tive framework of metric compression, and which depend on the
degree of deviation frommetric compression.

A. Developing intuition through analytical solutions

To get a sense for the effects of nonmetric compression, it is use-
ful to examine the behavior for specific velocity profiles. In particular,
consider a power-law family of profiles

vrðrÞ ¼ v0
r
a0

� �a

: (7)

We see that a¼ 1 reduces to Eq. (6), and thus describes metric com-
pression (or expansion). We will describe velocity profiles with a > 1
as “supermetric compression” (or expansion), and with a < 1 as
“submetric compression.”

A nice feature of these power-law velocity profiles is that they
allow us to analytically solve the induction equation. To do this, we
first must solve for the motion of a fluid element, which mathemati-
cally provides the characteristic curve along which Eq. (5) is solved.

It will make things cleaner to normalize this equation to a charac-
teristic radius ~r � r=a0 and time ~t � t=s, yielding a characteristic
nondimensional velocity ~v ¼ vr=ða0=sÞ. Here, a0 is a typical spatial
scale of the experiment, e.g., the radius of the outer boundary of the
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plasma, and s is a typical time scale for the compression. Then, Eq. (7)
becomes

~vrð~rÞ ¼ �v0~r
a; (8)

where �v0 ¼ v0s=a0. Then, for a given fluid element, the normalized
radius ~R � R=a0 as a function of time is governed by

d~R

d~t
¼ ~vrð~RÞ ¼ �v0~R

a
: (9)

The solution to this equation is

~R ¼
~R0e�v0~t a ¼ 1;

~R
1�a
0 þ ð1� aÞ�v0~t

� �1=ð1�aÞ
a 6¼ 1;

8<
: (10)

where ~R0 ¼ ~Rð~t ¼ 0Þ.
Now, we wish to plug this fluid element motion into the induc-

tion equation, Eq. (5). First, we plug Eq. (7) into Eq. (5), and then we
nondimensionalize, yielding

dI

d~t
¼ �I~r @

@~r
�v0~r

a�1� �
j~r¼~R ; (11)

¼ �ða� 1Þ�v0~R
a�1

I: (12)

Without yet having solved this equation, we can nevertheless
gain insight into its behavior. Specifically, the current enclosed by a
moving fluid element increases or decreases according to

sgn
djIj
dt

� �
¼ �sgnðvrÞsgnða� 1Þ: (13)

Thus, the current enclosed by a fluid element in a compressing plasma
(vr< 0) undergoing submetric compression (a < 1) will decrease over
time. Switching from compression to expansion or from sub- to super-
metric compression will reverse this conclusion. The full set of possi-
bilities are laid out in Table I.

The full solution for Ið~r ;~tÞ is given by

Ið~r ;~tÞ ¼ I0ð~R0Þ
~r
~R0

� �1�a

; (14)

~R0ð~r ;~tÞ ¼
~re��v0~t a ¼ 1;

~r1�a � ð1� aÞ�v0~t
� �1=ð1�aÞ

a 6¼ 1:

(
(15)

Note here that we consider ~R0 to be a function of ~r and ~t , with the
interpretation that ~R0ð~r 1;~t1Þ represents the initial position (at ~t ¼ 0)
of the fluid element that is at position ~Rð~t1Þ ¼ ~r1 at time ~t1. This defi-
nition links the Lagrangian frame of the fluid element to the fixed
Eulerian coordinates of the lab frame.

These power-law solutions, when considered globally, are not
particularly physical. For a < 1, we find finite enclosed current at
r¼ 0, indicating the formation of a current singularity at ~r ¼ 0.
Meanwhile, for a > 1, a singularity propagates inwards from ~r ¼ 1.
Nevertheless, they are useful for informing our view of how the mag-
netic field should evolve in local regions undergoing different types of
compression.

B. Conductor with a hard boundary

We are now in a position to examine the most common model
for the Z pinch: the bounded conductor. This model forms the con-
ceptual basis for the snowplow and slug-piston models, as well as
Haines’ study of the resistive evolution of current densities.5

We will study the specific case of a conductor that, at time ~t ¼ 0,
extends from ~r ¼ 0 to ~r ¼ 1 and is surrounded by a vacuum. For this
scenario, Eqs. (14) and (15) apply for all ~r < ~a, where the normalized
outer radius ~a of the conductor is defined by ~R0ð~a;~tÞ ¼ 1. Outside of
this radius, Imaintains the same value as at the surface of the conduc-
tor, since the vacuum region can contain no current. This solution is
shown in Fig. 1.

We can see instantly that the “total current” within the conductor
is not conserved for a 6¼ 1. Indeed, Eq. (14) can be used to derive an
expression for the total current as a function of time, yielding

Itotð~tÞ
Itotð0Þ

¼ ~a1�a: (16)

Thus we see that, for a bounded conductor, the relationships in
Table I apply not just to the local enclosed current, but to the total
enclosed current as well. Interestingly, this implies that the specific
radial profile of the compression, i.e., the shape of the snowplow or
slug, can have a massive impact on how much total current ends up
flowing through the plasma. Therefore, the velocity profile likely can
have a large influence on the inductance of the plasma and thus the
circuit dynamics of the pinch,8 although the coupling of this motion to
the circuit is outside the scope of this paper.

C. Understanding the hard conductor through flux
conservation

Although the total current running through the conductor is not
conserved, we can see from Eq. (14) that the enclosed current depends
only on the initial current distribution, and the mapping between the
initial and final position of the fluid element ~R0 ! ~r , but not on the
particular trajectory itself. This turns out to be true for general velocity
profiles and can be traced back to the conservation of the magnetic
flux. The conservation of the flux can also help us to understand why
the current behaves the way it does.

In a cylindrically symmetric system, the normalized magnetic
flux is given by

Uð~rÞ ¼
ð~r

0
Bð~r 0Þd~r 0: (17)

In metric compression, the magnetic field everywhere increases by the
same factor as the radial coordinate decreases, so that the integral
maintains the same structure. However, this is not true when a 6¼ 1.
In particular, for supermetric compression, the current density and

TABLE I. Evolution of the current jIj enclosed by a fluid element for supermetric
(a > 1) and submetric (a < 1) velocity profiles, for both compression (�v0 < 0) and
expansion (�v0 > 0).

�v0 < 0 �v0 > 0

a > 1 djIj=dt > 0 djIj=dt < 0
a < 1 djIj=dt < 0 djIj=dt > 0
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magnetic field move closer to the conductor edge (Fig. 2). Because
I / rB, the magnetic field is more “expensive” (in terms of current)
to produce at a larger radius, and so the total current in the conduc-
tor goes up to keep the total flux constant. Meanwhile, for submet-
ric compression, the current distribution moves in, where the
magnetic field is “cheaper” to produce, and thus the total current
goes down.

D. Importance of the boundary condition

This global nonconservation of the current for the bounded con-
ductor arises from the fact that vr does not go to 0 at the conductor
edge. If vr went to 0 (or a to 1, with jz¼ 0) in an extended region at the
boundary, then from Eq. (5), dI=dt ¼ @I=@t ¼ 0 at that point. Thus,
if there is a stagnant region of ideally conducting plasma outside of
some radius, the current enclosed by that region will remain constant.

In a gas puff Z pinch, the occurrence of deflagration processes is
very likely. The initial Paschen breakdown will tend to occur at some
radius rp, as was found by Giuliani et al.9 in their attempt to fit the
stagnation data from another experiment at the Weizmann.10,11 Then,
an ionization wave moves outward, meaning a plasma is continually
initialized at rest at the pinch boundary.12 Thus, a boundary condition
of v¼ 0 at the conductor boundary seems somewhat reasonable. It is
therefore worthwhile to examine velocity profiles which go to 0 at the
pinch boundary. This will in general require numerical solutions.

We note in passing that this deflagration wave also provides a
nonresistive mechanism for current channel broadening, which helps
to provide the broad initial current profiles. Deflagration creates new
plasma at the outer boundary of the conducting plasma region, and
the current generator can only add current (in excess of plasma self-
induction) at the outer edge of the plasma. Thus, excess current is con-
tinually added to the expanding outer edge of the plasma, producing a
broad initial current profile even in the absence of magnetic diffusion.

E. Current evolution in the lab frame for constant
velocity profiles

So far, we have been focused on the evolution of the enclosed cur-
rent in the fluid element frame. The analysis in this frame is relatively
simple, since the gain or loss of current does not depend on the specific
current profile in question. In addition, this frame naturally describes
the gain or loss of current “from the plasma.”

In an experimental setting, however, one measures the magnetic
field as a function of space, not as a function of fluid element. Thus,
we must relate the current evolution in the fluid frame to the current
evolution in the lab frame.

FIG. 1. Compression of a current channel in a bounded conductor in the lab frame. Left: velocity profiles submetric (a < 1, red, dot-dashed), metric (a¼ 1, black, solid), and
supermetric (a > 1, blue, dashed) compression. Center: the solution to Ið~r ;~t ¼ 0:6Þ for a bounded conductor with initial radius ~a ¼ 1, and an initial uniform current profile,
for each of the velocity profiles. The initial enclosed current distribution is shown in solid gray. The boundary of the conductor corresponds to the kink in the enclosed current
profile. Right: the corresponding current density jð~r ; ~t ¼ 0:6Þ.

FIG. 2. Schematic showing evolution of magnetic field lines in r � h plane for sub-
metric (a < 1), metric (a¼ 1), and supermetric (a > 1) compression of the con-
ductor. When a < 1, the field gets more concentrated on axis, where it is cheaper
(in terms of current) to produce, and thus, the total current decreases. The reverse
occurs for a > 1. Metric compression represents a very special case where the
total current is conserved.
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While in general there is not much progress to be made once the
convective derivative is included, we can find some valuable intuition
in the special case where the velocity profile is constant in time. Then,
we can use

dvr
dt
¼

�
@

@t
þ vr

@

@r

 !
vr (18)

to eliminate the r derivative in Eq. (5), yielding

dI
dt
¼ �I @vr

@r
þ I
r
vr ; (19)

1
I
dI
dt
¼ � 1

vr

dvr
dt
þ 1
R
dR
dt
: (20)

In the second line, we have used vr¼ dR=dt to pass the last term from
the lab to the fluid frame. Then, we can recast Eq. (20) as a conserva-
tive equation in the fluid frame,

d
dt

Ivr
R

� �
¼ 0: (21)

The conservative equation allows us to easily write the lab-frame
solution I(r, t),

Ivr
r
¼ I0ðR0ÞvrðR0Þ

R0
: (22)

Here, I0(R0) is the initial enclosed current evaluated at the starting
position R0(r, t) of the fluid element that is at r at time t.

We can examine the time-evolution of the enclosed current by
taking a partial time derivative,

vr
r
@I
@t
¼ @

@R0

I0ðR0ÞvrðR0Þ
R0

� �
@R0

@t
: (23)

As before, we can gain insight by examining power law profiles.
Taking v / ra and I0 / Rb

0 , we have

sgn
@jIj
@t

� �
¼ �sgn aþ b� 1ð Þsgn vrð Þ; (24)

where we have noted that @R0=@t has the opposite sign of vr, since it is
a backwards-integration of the velocity trajectory.

Consider again the case of a compressing plasma. If the current
density is 0 in some region outside a region of current then in this
region b¼ 0, and there will be a local decrease in enclosed current for
a < 1, as in the fluid frame. However, if we have a finite current den-
sity, b > 0, and thus there will be a lab-frame decrease in current only
if a < 1� b. The convective derivative, which carries current density
along with the plasma, tends to increase the enclosed current and
makes it harder for the local current to decrease. In the important case
of uniform current density, b¼ 2, and there is only lab-frame current
decrease if a < �1.
III. NUMERICAL SOLUTIONS FROM FLUX
CONSERVATION FOR MORE GENERAL SCENARIOS

Because the magnetic flux is conserved, for a comoving fluid ele-
ment with radial coordinate R(t),

d
dt

UðRðtÞÞ ¼ 0: (25)

This conservation property gives us a quick way to find numerical sol-
utions to the induction equation for more complicated, or even time-
dependent, velocity profiles. Given a velocity profile ~vð~r ; ~tÞ, we start
by numerically solving for the motion of the fluid element ~Rð~tÞ. We
will then have a set ð~Rð~tÞ;Uð~Rð~tÞÞ, which can be interpolated to yield
Uð~r ;~tÞ over the domain of dependency of our initial fluid elements. U
can then be differentiated to yield B and I.

Access to numerical solutions allows us to consider plasmas with
time-dependent behavior, such as an inflow followed by an outflow, as
well as plasmas with different behaviors in different regions. Such fea-
tures are essential for modeling the behavior of the annular current
distributions embedded within larger conducting regions, which could
characterize gas-puff Z pinches.

A. Annular current implosions

If we have a total current�I 0 flowing through a uniform plasma of
characteristic radius a0, we can approximate the initial conditions via
the one-parameter function family,

jmð~rÞ �
mþ 2
2p

�I 0
a20

ðmþ 1Þ~rm

1þ ðmþ 1Þ~rmþ2
� �2

 !
: (26)

The associated magnetic field is given by Bh ¼ 1
r

Ð r
0 rjðrÞdr, which

gives

Bmð~rÞ �
l0

�I 0
2pa0

ðmþ 1Þ~rmþ1

1þ ðmþ 1Þ~rmþ2

 !
: (27)

In this family of functions, shown in Fig. 3, the maximal magnetic field
is always at ~r ¼ 1, and the parameter m determines the peakedness of
the current distribution, with higher peaking at high m. Note that j(r)
diverges at r¼ 0 form< 0.

If the plasma is initially uniform, at small times, the velocity pro-
file will be proportional to the force density profile of the j� B force,
i.e.,

vm ¼ �
mþ 2
4p2

l0
�I 20

qa30

ðmþ 1Þ2~r2mþ1

1þ ðmþ 1Þ~rmþ2
� �3

 !
t: (28)

This velocity profile is shown in Fig. 3. Although it will only be valid at
short times, the general shape is likely to persist for a longer time. In
nondimensional form, with~t ¼ t=s,

~vm ¼ �
ðmþ 2Þðmþ 1Þ2~r2mþ1

1þ ðmþ 1Þ~rmþ2
� �3

 !
~t ; (29)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2qa40
l0

�I 20

s
: (30)

We can apply our intuition from Sec. II to the velocity profile in
Eq. (29). At low radii, the profile is clearly supermetric for m> 0, so
that the current enclosed by a fluid element is increasing, in accor-
dance with Eq. (5) and Table I. However, at large radii, the compres-
sion becomes submetric, and so the current enclosed by a fluid
element is decreasing. Thus, the current density must be decreasing
between these regions, and at some point, will become negative.
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This reversal of the current density can be seen in the simulations
in Fig. 4, which shows the enclosed current profile resulting from the
initial conditions in Fig. 3. For higherm, i.e., a more peaked initial cur-
rent distribution, it occurs both earlier (due to the larger velocities)
and further out. We also see that the enclosed current at certain radii
can actually exceed the enclosed current at the boundary, implying the
possibility of creating a current channel stronger than that suggested
by a boundary measurement, which is screened from conventional
(edge) diagnostics by a reverse current.

Of course, these solutions do not represent self-consistent
dynamics; as the current distribution changes, the plasma motion will
change in response. In particular, the formation of reverse currents
will result in outward forces on the plasma, which will dramatically
impact the dynamics. Nevertheless, the solutions indicate an interest-
ing possible consequence of the fact that the plasma is not a fixed, uni-
form conductor with a well-defined boundary, and are worthy of
further investigation.

B. Induction near stagnation

As the implosion progresses, Ohmic heating and compression of
the plasma will rapidly increase its thermal pressure. The pressure
force will often grow much larger than the magnetic force and may
further accelerate the leading edge of the plasma annulus while

decelerating the rear edge. In this case, it is reasonable to assume that
the current channel is trailing the region of peak compression velocity.
Thus, as stagnation approaches, the current channel will find itself in a
region of submetric compression, where we can expect the enclosed
current to decrease.

To see this in action, consider a velocity profile of the form

~v ¼ d~rae�~r b=c: (31)

In terms of the coefficients (a, b, c, d), the radius of maximum velocity
is given by ~r� ¼ ðac=bÞ1=b, and the maximum velocity is given by
~v� ¼ dðac=ebÞa=b. Thus, we can choose a desired general shape by
choosing a and b, and then solve for c and d in terms of our target ~r�

and ~v�. Choosing ~v� ¼ 1=2; ~r� ¼ 0:3, a¼ 1.7, and b¼ 1 results in the
velocity profile shown in the leftmost plot Fig. 5. The corresponding
change in the position of the fluid elements is shown in the second
plot from the left.

We examine the effect of this velocity profile on a current annu-
lus initially located outside of the peak inflow, from 0:4 < ~r < 0:7.
Overall, the current channel widens dramatically as a result of the
plasma motion. However, the bulk of the current channel–roughly the
outer 70%–moves outwards. Because the current channel is often
defined as an interquantile range of the total current–e.g., the region
between 20% and 90% of the peak current–a laboratory observer

FIG. 3. The function family jmð~r Þ and Bmð~r Þ, and associated short-time velocity profile vmð~r Þ for different values of m. Different lines correspond to m¼ 0 (green, solid),
m¼ 1 (blue, dashed), and m¼ 4 (red, dash-dotted). The maximum B field always occurs at ~r ¼ 1. Increasing m corresponds to increasing peakedness of the current profile.
The dot on each profile indicates the point where @ð~v=~r Þ=@~r ¼ 0, i.e., the transition point between supermetric and submetric compression.

FIG. 4. Evolution of the enclosed current Ið~r Þ=I0 in the lab frame as a function of time ~t for the current annulus scenario, with a velocity profile given by Eq. (29). Line colors
and styles correspond to the matching profiles in Fig. 3. Because the enclosed current goes from increasing at small radii to decreasing at large radii, an inverse current chan-
nel forms.
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would describe this as outward motion of the current channel, which
occurs as a result of the inward motion of the plasma.

While it is clear that the majority of the current channel can
move outward under plasma compression, the inner edge of the cur-
rent channel always has to move inward. To see this, we can consider
two cases: the case where there is finite current density at the origin,
and the case where there is not. If there is finite current density at the
origin, then we simply observe that compression must be metric or
supermetric at r ! 0; otherwise, there is infinite divergence in the
velocity field. Thus, the current must be increasing in time (or con-
stant, if there is an empty region in the current profile), but cannot
decrease. If there is no current density at the origin, then there must be
a location where vr is nonzero, but I is 0. At this point, the convective
term vr@I=@r will be larger in magnitude than the RHS of Eq. (5),
since I must go to 0 faster than its derivative. Then, Eq. (5) says that
@I=@t ¼ �vr@I=@r, so that for inward-flowing plasma, the enclosed
current will grow. Thus, during compression, the main channel can
only move outward through broadening of the total channel, with
inward motion of the channel at the inner edge.

The velocity profile in Fig. 5 can also give us intuition into the
behavior post-stagnation. When a Z pinch plasma stagnates, the plasma
begins to expand from the center outward. Thus, the velocity profile will
correspond to submetric expansion, i.e., we will have Fig. 5, but with
opposite sign. Thus, by exchanging the roles of the initial and final pro-
files in the figure, we can gain insight into the post-stagnation behavior.

Post-stagnation, then, we see that the current channel narrows,
and the majority of the current channel can be made to move inward,
depending on the velocity profile. Just as inflow can lead to an outward
motion of the main current channel, outflow can lead to inward
motion.

These examples demonstrate some of the unintuitive behaviors
contained in the induction equation, for even fairly straightforward
velocity profiles.

IV. COMPARISON TO EXPERIMENT

Observing these unintuitive effects requires the measurement of
the radial magnetic field profile. Detailed measurements of the evolu-
tion of the radial magnetic field profile have been recently obtained at
a small-scale Z pinch at the Weizmann Institute of Science. Being part
of a Ph.D. thesis,4 the detailed setup and results are currently in prepa-
ration for publishing elsewhere. Here, polarization spectroscopy

(simultaneous detection of the rþ and r� Zeeman components13,14)
along with utilization of a pronounced charge state separation, as has
been done previously at the Weizmann Institute,2 yielded the highly
temporally and radially resolved magnetic field profiles.

The Weizmann plasma has a density that ranges from
1017to 1019 cm�3 and a temperature that ranges from 5 to 20 eV.
Thus, the electron-ion collision frequency sei < 20 ps, meaning that
the electron and ion velocities are extremely well equilibrated on the
30ns dynamical timescales considered. A minimum value for the ion-
neutral collision frequency occurs in the low-temperature limit at the
low density, where the collision time in seconds is given by15

sni ¼ 1:1� 109
1

niZi

� �
AR

aR

� �1=2

; (32)

where ni is the ion density in cm�3, aR is the relative polarizability of
the atom, equal to 5.4 for oxygen (used in the current experiment),
and AR is the reduced mass in a.m.u., equal to 8. Thus, the minimum
neutral-ion equilibration time in low-density, singly ionized regions of
the plasma is sni ¼ 13 ns. In practice, the equilibration time will tend
to be even shorter than this, since the less dense areas of the plasma
tend to be hotter, and thus more highly ionized.

If the plasma were purely ideal, we could infer an average velocity
profile between measurement timepoints directly from the magnetic
field profile. To do this, we take advantage of the conservation of flux.
Because the flux is conserved, if we measure the flux as a function of
radius at two timepoints t1 and t2, we have

Uðr; t1Þjr¼Rðt1Þ ¼ Uðr; t2Þjr¼Rðt2Þ: (33)

Thus, we have a natural mapping Rðt1Þ ! Rðt2Þ, which corresponds
to the average fluid motion over the interval ½t1; t2�.

A complication is that the plasma in this experiment is also resis-
tive. The relative importance of advective vs resistive effects in the
induction equation is given by the magnetic Reynolds number,

Rm ¼ l0Lv
g

: (34)

In the Weizmann experiment, the length scale is several millimeters,
the implosion times are on the order of 100ns, and the resistivities are
on the order of 30 X lm. Thus, Rm �0:5, though this number can
vary significantly across the plasma.

FIG. 5. Details of a prestagnation current escape scenario. From left to right: velocity profile, final fluid element position as a function of initial fluid element position, enclosed
current profile, and current density profile. All plots except the second represent profiles in the lab frame. The initial enclosed current distribution and current density are shown
in gray. The current channel broadens, with the majority of the current channel moving outwards.
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The fact that the magnetic Reynolds number is order 1 means
that resistivity and advection will be equally important in determining
the magnetic field evolution. Being in this intermediate regime will
make it difficult to quantitatively model the plasma without a detailed
numerical simulation incorporating both effects, which is outside the
scope of this paper. However, we can still look for qualitative signa-
tures of the inductive effects.

A typical trace of the current profile evolution in the Weizmann
experiment around stagnation is shown in Fig. 6. The current channel
is defined as the region between 20% and 90% of the total current and
its centroid is at rC ¼ ðrðI20%Þ þ rðI90%ÞÞ=2. At 140ns (after the start
of the discharge current), the current channel, i.e., its centroid, reaches
the smallest radius and commences stagnation. Between 140 ns and
170ns, the plasma continues to move inward, as indicated by the tra-
jectory of the peak electron density in the lower plot of Fig. 6. While
the inner edge of the current channel, I20%, implodes together
with the plasma, a distinct spread of the outer edge of the current
channel, I90%, to much higher radii is observed. The broadening of the
current channel is attended by an outward motion of its centroid.
Subsequently, a narrowing of the current channel takes place, while
the plasma itself expands.

Although this expansion and subsequent recontraction of the
current profile seems unintuitive on the first view, we were able to
explain the behavior of the near-stagnation plasma seen in Ref. 4 based
on a plausible model for the velocity profile in the imploding plasma.
The good agreement between the experimental data in Fig. 6 and the
theoretical model in Fig. 5 is consistent with the observation in Ref. 3,

for remarkably different experiments and energies, that the main cur-
rent channel is located outside of the point of maximum velocity and
that the final stagnation is driven by the implosion pressure rather
than by the magnetic field.

V. COMPARISON TO HAINES’ RESISTIVE MODEL

We showed that for certain velocity profiles, the ideal advection
model predicted a decrease in the current conducted in the plasma
bulk, recovering qualitatively the experimental measurements.4

However, other models for the current profile evolution exist as well.
For instance, one of the earliest and most successful models for the
current distribution within a Z pinch, due to Haines,5,6,16 also pre-
dicted a small current bounce around stagnation. In this section, we
first briefly review Haines’ resistivity-based model, and then explain
why it does not adequately describe the Weizmann experiment.

The model by Haines5,6,16 mostly ignored the plasma motion
(except for the possibility of metric compression), focusing instead on
resistive diffusion of the magnetic field. In this model, the approach
was to solve for the current profile evolution consistent with the
change in the total current trace ItotðtÞ. The current trace thus set a
time-dependent boundary condition on the magnetic field at the outer
edge of the conductor.

An immediate consequence of this boundary-value approach was
that changes in the total current diffused inward from the outside edge
of the conductor. Haines’ model thus predicted the formation of a pos-
itive current sheath at the outer boundary during the current rise time,
and the formation of an inverse current sheath at the outer boundary
when the discharge current decreases. Thus, the current channel
would first move outward as the current rose, and then move inward
as it decayed. However, there are three ways in which this model is
inconsistent with the Weizmann observations.

First, Haines’ model predicted that the additional current added
at the boundary would propagate resistively inward, causing the
enclosed current to increase at every point in the plasma. In other
words, although the current channel would move outward before stag-
nation, so that a smaller fraction of the current would flow in the
plasma bulk, the magnitude of the current in the plasma bulk would
increase. In the experiment, in contrast, the current in the plasma bulk
decreased prior to stagnation. However, this observed behavior is con-
sistent with the current channel evolution in the advection model, as
shown in Fig. 5.

Second, the resistive model failed to explain why the current
escape and recontraction only occur around stagnation. In fact,
Haines’ model predicted more rapid escape of the current channel at
early times, since current added at the boundary would form a larger
fraction of the overall current channel at times with less total current.
Instead, at the timepoints in the Weizmann experiment near stagna-
tion (between 140 ns and 170ns), the total discharge current only
changed by around 10%, inconsistent with the large-scale redistribu-
tion of the current channel. In contrast, the advection model provides
a natural transition from current channel steepening in the initial
current-driven annulus (Sec. IIIA), to current channel broadening
and escape during the final pressure-driven compression near stagna-
tion (Sec. III B).

Third, the resistive model predicted the formation of an inverse
current sheath as the total current began to decay, whereas no inverse
current sheath was observed on the Weizmann experiment after the

FIG. 6. Upper graph: evolution of the current channel, defined as the region
between 20% and 90% of total current, on the Weizmann experiment around stag-
nation. Error bars have been evaluated individually for each point according to the
signal to noise ratio of the measurement and the present current profile. Lower
graph: trajectory of the peak plasma density at the same times. The error bars rep-
resent the spatial resolution of the setup. Together, the graphs show that the current
channel broadens while the plasma compresses and recontracts when the plasma
expands.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 122706 (2019); doi: 10.1063/1.5118668 26, 122706-8

Published under license by AIP Publishing

https://scitation.org/journal/php


peak current. Admittedly, a small inverse sheath could have fallen
within the error bounds of the magnetic field measurement, with the
presence of the sheath only observable through the apparent inward
motion of the current channel.

These three points taken together make the Haines model a poor
candidate to explain the current escape in the Weizmann experiment.

Note that the formation of inverse currents at the plasma edge
was one of the most interesting consequences of the Haines model,
since their presence implied that the plasma would separate into a con-
tracting inner plasma and an expanding outer plasma. However, in
subsequent years, inverse currents were also shown to result from the
propagation of pressure shock waves from the plasma center.7

Moreover, as we showed in Sec. IIIA, inverse currents can also arise
fairly easily as a consequence of the ideal induction equation, for cer-
tain velocity profiles. Indeed, as shown in Eq. (5) and Table I, when-
ever a conducting area outside of a current distribution is subjected to
submetric compression or supermetric expansion, for example, as a
result of pressure forces, a reverse current distribution will develop.
This suggests that reverse currents might be even more ubiquitous and
easy to produce than previously thought.

VI. DISCUSSION OF PLASMA OBSERVABLES FOR
FUTURE STUDIES

Because the magnetic Reynold’s number Rm� 1, it is difficult to
quantitatively disentangle resistive effects, such as those in Haines’
model, from the ideal advective effects we considered. In this section,
we discuss the experimental observables which are most promising for
differentiating the ideal vs resistive behavior of the plasma.

The unintuitive and nonconservative behavior of the current
density under ideal induction implies that it is not the best observable
to consider when attempting to back out the plasma dynamics.
Instead, a useful analysis technique could be to make use of the locally
ideally conserved quantities in the plasma, i.e., the magnetic flux
UðrÞ ¼

Ð r
0 Bdr

0 and the enclosed nucleus number per unit length
NðrÞ ¼

P
i 2p

Ð r
0 nir

0dr0, where the sum is over all charge states of all
atomic species. Then, if flux is conserved, the curve UðNÞ will be con-
stant at all timepoints. Thus, if the magnetic field profile and density
profile can be independently measured, changes in the curve UðNÞ
should indicate non-1D-ideal magnetic field evolution.

However, such an approach is not without its drawbacks. First,
since the flux is an integral over radius, the error in the magnetic field
measurement will be amplified at larger radii. Second, in a small-scale,
low-density gas puff Z-pinch, direct ion density measurements are
infeasible. Thus, only the electron density can be measured directly;
ion density must then be inferred from the electron density and tem-
perature, and neutrals are generally entirely invisible. Thus, construct-
ing an accurate N(r) is challenging, although bounds can be placed
based on reasonable locations for the neutrals.

In addition to these integral conserved quantities, the quantity
B=rne is also constant along the electron trajectory in an axisymmetric
ideal plasma.17 In fact, the constancy of this quantity along the electron
trajectory can induce fast magnetic field penetration into a dilute
plasma.18 The quantity B=rne is thus another strong candidate for use
with spectroscopic data, to evaluate the consistency of the plasma
dynamics with ideal MHD. However, it also requires simultaneous
measurement of the density and magnetic field profiles, and thus is
subject to many of the same errors as trying to measureUðNÞ.

Thus far, we have only considered measurement of the magnetic
field and nucleus density. However, in the experiment performed at
the Weizmann Institute, each charge state was peaked at a different
radius; the spectra of these lines thus could in principle give measure-
ments of the magnetic field (via Zeeman splitting2,4) and radial veloci-
ties (via Doppler shifts19,20) at those locations. In the present
experiment, the relatively low implosion velocities prevented the spec-
troscopic velocity determination. However, the ability to measure vr as
a function of time would allow for the approximate reconstruction of
the fluid element trajectories RðR0; tÞ. Thus, by comparing the flux
curves UðR0Þ for the moving fluid elements at different times, it
should be possible to deduce the degree to which flux is conserved,
without relying on inferred ion densities.

Finally, given the many complications, carrying out numerical
simulations that reproduce the observed charge state distribution evo-
lution, including ionization and particle motion, could provide a useful
bridge between experiment and theory.9 Such simulations should be
focused on the scenario we propose here, consistent with experimental
findings,3 in which the pinch transitions from a current-driven implo-
sion at early times to a pressure-driven implosion (with a correspond-
ing outward force on the current piston) at late times.

VII. CONCLUSION

In this paper, we derived the consequences of the ideal induction
equation for the current channel dynamics in a contracting or expand-
ing Z pinch. We showed that for nonmetric compression, the current
distribution can exhibit surprising behavior. For a bounded-conductor
model, we showed that the specific velocity profile within the implod-
ing conductor had a dramatic effect on the evolution of the total cur-
rent flowing through the conductor, suggesting that the evolution of
the current distribution for a Z pinch could depend strongly on the
specifics of the implosion profile. In considering gas-puff Z pinches,
we discussed how the outward propagation of an ionization wave
implied the presence of a zero-velocity conductor boundary, which in
turn could lead to the formation of reverse currents. We also showed
how certain velocity profiles could explain the expansion and recon-
traction of the current channel around stagnation, thus explaining
part of the findings observed in the Weizmann Z pinch experiment by
the spectroscopic magnetic field distribution in the imploding plasma.
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