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Abstract
We present a novel, straightforward method for the characterization of spatiotemporal couplings
(STCs) in ultra-short laser pulses. The method employs far-field interferometry and inverse
Fourier transform spectroscopy, built on the theoretical basis derived in this paper. It stands out
in its simplicity: it requires few non-standard optical elements and simple analysis algorithms.
This method was used to measure the space-time intensity of our 100 TW class laser and to test
the efficacy of a refractive doublet as a suppressor of pulse front curvature (PFC). The measured
low-order STCs agreed with ray-tracing simulations. In addition, we demonstrate a one-shot
measurement technique, derived from our central method, which allows for quick and precise
alignment of the compressor by pulse front tilt minimization and for optimal refractive doublet
positioning for the suppression of PFC.

Keywords: spatiotemporal characterization, ultra-short laser pulses, far-field interferometry,
inverse Fourier transform spectroscopy, pulse front tilt, pulse front curvature

(Some figures may appear in colour only in the online journal)

1. Introduction

For more than three decades, the use of chirped pulse ampli-
fication (CPA) has opened the frontier of high energy, ultra-
short laser pulses [1]. When used in concert with other laser
amplifier technologies, scientists have demonstrated CPA laser
chains with peak powers in the gigawatt and even petawatt
ranges, and have set their sights towards realizing exawatt class
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lasers [2]. These intense, short laser pulses provide a powerful
tool in a wide range of fields, and in particular in the study of
laser–matter interaction in the relativistic regime [3].

In addition to temporally stretching the pulse, CPA laser
chains typically include beam expanders, used to limit the
fluence during the amplification stage, which are essential to
mitigate unwanted nonlinear effects and avoid damage to the
optical components. It is often more practical to use refract-
ive as opposed to reflective beam expanders. However, since
a broadband spectrum is necessary in order to achieve an
ultra-short pulse, expansion using refractive lenses has the
side effect of accumulating chromatic aberrations. This can
significantly deteriorate the spatiotemporal properties of the
pulse at focus. Thus, the use of refractive beam expanders is
often limited to only the early stages of amplification, before
the beam’s diameter grows too large, when these undesirable
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effects are minimized. Even with perfect alignment, a con-
ventional beam expander that utilizes the same glass for both
lenses introduces a specific spatiotemporal coupling (STC),
known as pulse front curvature (PFC). The part of the beam
that travels across the optical axis is delayed more than others
since it accumulates a larger group delay. The relative delay
scales quadratically with the beam size [4, 5], which makes
it especially relevant for large diameter high-intensity beams.
This leads to a curved pulse front that is radially symmet-
rical across the beam. In addition to PFC, a spatially vary-
ing group delay dispersion (GDD) is introduced, broaden-
ing the pulse in time non-uniformly across the beam. This
can be an important effect for pulses having a duration much
shorter than 25 fs. Also, in real systems, due to imperfections
in optical components and misalignment of beam expanders
and stretcher–compressor pairs, other STCs are introduced,
such as pulse front tilt (PFT) or/and spatial chirp [6]. The
STCs mentioned above are the most dominant and are known
as low order STCs. However, in real CPA laser systems more
exotic types of STCs may arise. Among them are complex
chromatic spatial phase aberrations induced by defects in the
compressor optics and spatially non-uniform spectral compos-
ition due to pump depletion during amplification in a saturated
regime [6, 7].

In most cases, any STCs are undesirable because they
increase pulse duration and reduce peak intensity and con-
trast at the focus [8–10]. However, in some cases, one can
exploit STCs in a controlled and intricate way to manipu-
late the dynamics of the intense pulses at the focal region
[11, 12]. Control over the velocities of energy depositions
along the focal region through the sculpting of customized
STCs enables novel experiments in Raman amplification and
ionization waves [13, 14] and paves the way toward a new
generation of laser-driven particle accelerators [15–17]. Tech-
niques for accurate and straightforward measurement of STCs
lie at the heart of our ability to mitigate unwanted couplings
and enable the use of STCs as a critical degree of freedom in
an experiment.

In parallel to state-of-the-art temporal metrology
development [18–20], significant progress has been made
in measuring STC during the last decades. The development
of spatio-temporal metrology is well summarized in reviews
[6, 21, 22], while the cutting edge work is presented in recent
papers [23–25]. Some of these state-of-the-art techniques
provide the complete spatiotemporal characterization of near-
visible femtosecond laser beams. The cost, in most cases, is
complex optical setups and heavy post-processing algorithms,
which makes it challenging to use them on a regular basis.
Other STC measurement techniques sacrifice completeness
for the sake of simplicity, and are typically limited to spatially
varying pulse front delay measurement (first order spectral
phase).

This article demonstrates a straightforward method to
measure STC that is based on far-field interferometry and
inverse Fourier transform spectroscopy. With this method we
measure the beam’s group delay and temporal width at a
discrete set of points along the beam with different radial
and angular coordinates. The method is conceptually simple,

analytically solvable, and has a very simple experimental
procedure. The optics required for it, with the exception of
the delay mirror and the laser-cut beamlet selector described
below, are standard optics found in almost any ultra-short
laser system. In addition, the method has a very minimal foot-
print and, thus, minimally disturbs the general setup of the
experiment. This approach can accurately ascertain the pulse
front in time and space together with the spatially-varying
pulse duration. We demonstrate the efficacy of this technique
by characterizing the spatio-temporal intensity profile of the
25 fs 100 TW laser at Weizmann Institute of Science (WIS)
[26], and extracting the values of the PFT, PFC, and spatially-
varying temporal duration. We show that for our system,
higher order STCs have a negligible effect on the intensity.
In addition, using this measurement technique, we investigate
the performance of a refractive doublet, which we refer to as
the ‘PFC compensator’, as ameans to suppress unwanted PFC.

2. Far field beamlet cross-correlation STC
measurement

The proposed method is self-referenced and based on linear
field cross-correlation (also known as inverse Fourier trans-
form spectroscopy) [5, 27, 28]. Similar to other spatially
resolved Fourier transform techniques [27, 28], it uses a small
diameter central portion of the beam as a reference (reference
beamlet). However, instead of spatially expanding the refer-
ence beamlet to the full beam size and comparing temporally
in the near field, our method ‘directly’ compares the refer-
ence beamlet with test beamlets in the far-field, similar to far-
field slits interferometry [29, 30]. It significantly reduces the
complexity of the optical setup and alignment since it relies
on focusing optics and focal spot imaging, which are usually
already part of the optical setup.

The far-field beamlet cross-correlation is performed as fol-
lows: first, the two near-field beamlets, selected by means of
a special mask, are focused and form an interference pattern
in the far-field. Second, the beamlet pair is cross-correlated by
changing the delay of the reference beamlet by a piezo actuator
attached to the central portion of the mirror. Finally, the fringe
contrast envelope as a function of delay is used to compare
the beamlets temporarily. The contrast envelope’s maximum
corresponds to zero group delay (synchronization) between
the beamlets while the contrast width reveals the temporal
broadening, which can be caused by the second-order relative
spectral phase (GDD). Repeating this cross-correlation for test
beamlets at different spatial locations reveals the STC for the
entire beam. The advantage of the method is that the spatial
resolution of the STC measurement could be easily adjusted
if needed. Usually, there are low order STCs; therefore, total
scanning time could be reduced by picking a proper spatial
resolution of the measurement.

This technique allows for the measurement of STC for
beams with custom spatial beam shaping that result in intricate
spatial aberrations. It is well suited for the direct measurement
of the group velocity of the intensity peak for long focal depth
optics, such as axiparabola experiments, which have a large
amount of controlled spherical aberration [31, 32].
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Figure 1. Simplified setup and analysis flow. (a) Large diameter ultrashort laser pulse with STC impinges on beamlet selector, which splits
the large beam into two small beamlets: test and reference. The reference beamlet stays on an optical axis and is delayed with a mirror
attached to a piezo stack. Both beamlets are focused with a parabolic mirror, imaged by a microscope objective, and interfere on the CCD
sensor. (b) Selected experimental fringe patterns for different delays of one beamlet pair. (c) (top) Fringe visibility as a function of delay is
calculated using spatial FFT through the value of the side-band (s.b.) with respect to the DC value; (bottom) the side-band value is raised to
the fourth power and fitted with a Gaussian.

3. Experimental setup

We measured the STC of the HIGGINS Ti:sapphire 2×
100 TW laser system at the WIS, which delivers two 25 fs
pulses with an energy up to 2.3 J per beam at a repetition rate
of 1Hz and a beam diameter of 60mm in transport. Figure 3
shows the near field intensity profile as well as the radially
averaged intensity fit of an X–Y cross section. The measure-
ment was taken with grid paper over the mirror and the fit was
numerically adjusted to reflect this. The spectrum of the laser
has a double peak shape (see figure A2) and is centered around
800 nm (or 375 THz in frequency), with a spectral width of
40 nm at full width at half maximum (FWHM). We meas-
ured the STC of both laser beams and obtained similar res-
ults; therefore, we will present results for one beam (B1).
The simplified experimental setup used for the beamlet cross-
correlation STC measurement is depicted in figure 1(a). Fully
amplified, attenuated, and compressed laser pulses impinge
on the beamlet selector mask, which consists of two perfor-
ated disks. The orientation of the discs allows for the selection
of the test beamlet from a discrete set of radial and angular
positions while the reference beamlet passes through the cent-
ral hole (see appendix ‘Beamlet selector’). The 2.65mm size
of the perforations was selected in order to optimize between
the larger diffraction effects that come with smaller mask
holes and subsequent propagation of over 1m before focus-
ing and the lesser uniformity of STCs across the beamlet and
decreased spatial measurement resolution that comes with lar-
ger holes.

In the case shown in figure 1(a) the test beamlet is 27mm
apart from the reference beamlet. After the selector, the two
beamlets are reflected at a 45◦ angle from a special segmented
plane mirror. This mirror has a center cutout where a small
movable mirror attached to a piezo actuator is installed (see
appendix ‘Delay mirror’). The reference beamlet is reflected
from this actuated mirror, allowing for precise control over
the delay between the beamlets. The delay scales with the
modified optical pathway of the reference beam, with a geo-
metric factor that arises from the angles of reflection (see
appendix ‘Delay mirror’). Then, the beamlets are focused with
a 2m focal length off-axis parabola (f /33), and are imaged to
a 16-bit charge-coupled device (CCD) camera with a micro-
scope objective.

The interference patterns, shown in figure 1(a), correspond
to a 25 fs delay between the beamlets. Since the test beamlet
has a slightly different k-vector and is delayed with respect
to the reference, the interference pattern is not symmetric.
More visible fringes appear at the region of better overlap in
space-time. The space-time interference is shown for the case
when the two beamlets are perfectly compressed (no global
GDD). However, the time-integrated fringe pattern will not
change in the case of global GDD being applied on both beam-
lets. For each beamlet pair, a set of measurements with vary-
ing delays is taken and the process is repeated for different
test beamlets. An example of this data analysis sequence is
shown in figure 1(b). First, interference signals are processed
to remove the background and crop the image to keep the main
lobe; then, a standard spatial fast Fourier transform (FFT) is
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applied, yielding a signal with a DC term and two sidebands.
The highest overall contrast of the fringe pattern corresponds
to the highest value of the sideband. The relative amplitude
of the sideband with respect to the DC peak is extracted and
plotted as a function of delay in figure 1(c) (top). This plot
represents the beamlets’ cross-correlation envelope. Finally,
we raise the cross-correlation to the fourth power to match the
width of the transform limited pulse as shown in section 5 and
fit it to a Gaussian. The Gaussian fit parameters such as delay
and width provide the relative first and second-order spectral
phase of the test beamlet with respect to the reference; from
these measurements, the pulse front and temporal width of the
intensity along the beam is reconstructed.

4. Experimental results and discussion

In the experiment, we measured the STC of one of our
laser beams (B1) in two cases. The first is with the STC
that results from our laser chain and the second is with
the addition of a specially designed doublet lens to correct
laser chain accumulated PFC [33, 34]. The doublet, which
is placed in the middle of the final beam expander, allows
for the tuning of PFC by adjusting its position in the diver-
ging beam that is in the expander [35]. For more details about
the doublet we use, please see appendix ‘Laser chain STC
simulation’.

For each case (uncorrected and doublet corrected), we
scanned 36 pairs of beamlets with 50 delay steps at a 1Hz
rate. Beamlet switching took no more than 10 s; therefore, the
total scan time was around 36min. The total data processing
using a desktop computer with a dual Intel Xeon processor
@ 2.2GHz and 64Gb RAM took 13min. As can be seen,
we sampled much more than needed for the low order fit we
used in each scan; both in temporal—50 delay steps—and in
spatial—36 beamlets pairs—resolution. The total time with
optimized sampling and optimized spatial resolution could be
reduced for the same final result.

4.1. Pulse front delay measurement

We performed beamlet cross-correlation across the X–Y plane
of the beam in 4mm steps and took four additional points
between the X–Y axes in the near field. As we have shown
analytically in section 5, equation (21) a Gaussian approxima-
tion of the beamlet cross-correlation raised to the fourth power
has the functional form:

exp

(
− 1
2σ2

bc4

τ 21

)
(1)

where τ 1 is the group delay between the beamlets and σbc4
is the width of the correlation raised to the fourth power. We
plot the fit extracted τ 1 as a function of the test beamlet near-
field position X–Y in figure 2 for both the uncorrected and
corrected PFC cases. The vertical size of the data points (or
black vertical solid lines on x–y cross-sections) are the 95%

confidence bounds of the fit. To test the stability of our meas-
urement, we compared data for the |x|, |y| = 20mm points
from the beginning, middle, and end of the scan. As can be
seen, these data points nearly coincide within the measure-
ment error showing that the pointing stability and spatial jit-
ter were sufficiently small to allow for reliable measurement.
Significant stability and jitter issues would affect the meas-
urement, in part by measuring a different part of the beam
than expected by the measurement. Next we fit the pulse front
delay data to low order polynomials to extract the correspond-
ing PFT and PFC for both cases. The fit functionwas τ1(x,y) =
τ0 +PFTxx+PFTyy+PFC(x2 + y2). The fit surface is plotted
with the data points, its color encoded with radially averaged
intensity (intensity obtained from figure 3). As can be seen in
table 1, our laser pulse front is dominated by PFC (no doublet
case), which is to be expected since we used only refractive
telescopes before compression. It can also be seen that the cor-
rective doublet successfully suppressed the PFC by more than
one order of magnitude.

It is worth noting that before this experimental run,
the PFT and the PFC of the corrected case were optim-
ized by grating alignment and doublet longitudinal position-
ing, respectively, using a fast measurement procedure based
on beamlet interference. This will be discussed in detail
later.

4.2. Temporal pulse width measurement

The next step is to evaluate the spatially-varying tem-
poral width. For this purpose we utilize the beamlet cross-
correlation width σbc4. As we have shown in section 5,
equation (22) the width is composed of three terms:

σ2
bc4(x,y) =

1
2c2B

+
x2 + y2

8σ2
0ω

2
c
+
c2Bβr(x,y)2

8
. (2)

The first term is the transform-limited width which is inversely
proportional to the spectral bandwidth cB. The second is a geo-
metric term that broadens the cross-correlation as the distance√
x2 + y2 between the beamlets in the near-field grows and is

inversely proportional to the size of the beamlets in the near-
field σ0 and the central laser frequency ωc. This term stems for
the fact that the k-vectors of the beamlets differ because of the
distance between them in the near-field. Finally, the third term
stretches the cross-correlation when the test beamlet broadens
relative to the reference beamlet. We shall assume that the rel-
ative GDD βr(x,y) is the cross-correlation broadening source.
In general, it could include relative spectral narrowing and/or
relative spectral phase of higher order than GDD. The meas-
urement is insensitive to global GDD and thus GDD absence
needed to be independently verified byWizzler measurements
(shown in appendix ‘Beamlets cross-correlation spectrum and
deconvolution factor’) at the central part of the beam in near-
field as required by inverse Fourier spectroscopy for full space-
time reconstruction.
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Figure 2. Measured pulse front delay across the beam and corresponding semi-transparent fitted surfaces. (a), (c) Uncorrected case and (b),
(d) corrected case with the doublet. The beam intensity is encoded in the color of the surface. The x–y cross-sections of data points and
surfaces are shown in (c) and (d), and in the corresponding planes of (a) and (b).

Figure 3. (a) Near field intensity profile. (b) Radial fit for intensity
X–Y cross-sections.

Our laser has a double peak rather than a Gaussian spec-
trum assumed in the analytical model; therefore the beam-
lets’ cross-correlation width σcb4 is narrower than the tem-
poral intensity width by a factor of d= 1.27 as we show in
appendix ‘Beamlets cross-correlation spectrum and deconvo-
lution factor’. The final spatially varying temporal width is
obtained by removing the geometrical term in equation (2)
(using ωc = 2.36× 1015 rad s−1, and σ0 = 1.1mm, which cor-
responds to the beamlet FWHM in the near field: FWHM0 =
2.65mm) and re-scaling by the deconvolution factor d. We
plot intensity temporal width (FWHM) as a function of the
test beamlet position X–Y in figure 4 for PFC uncorrected and

Table 1. Extracted fit parameters for low-order pulse front delay for
uncorrected and corrected cases.

No doublet With doublet

PFTx (fsmm−1) −0.114± 0.048 −0.102± 0.039
PFTy (fsmm−1) 0.027± 0.048 −0.029± 0.039
PFC (fsmm−2) −0.0239± 0.0028 −0.0019± 0.0023

corrected cases. The vertical size of the data points (or black
vertical solid lines on x–y cross-sections) are the 95% confid-
ence bounds of the fit. Thenwe fit the data to low order polyno-
mials FWHM(x,y) = FWHM0 +Lxx+Lyy+Q(x2 + y2), the
coefficients of which are provided in table 2.

From the results depicted in table 2 we can see that in both
uncorrected and corrected cases, the beam has a transform-
limited width of approximately 25 fs at the center, which
assumes perfect compression verified by independent Wizz-
ler measurements. The width grows slightly from the center
toward the beam’s edge. For example—using only quadratic
slope—at a distance r= 30mm from the center, the width
grows by 2 and 4 fs for the uncorrected and corrected cases,
respectively. This, in turn, implies a temporal broadening cor-
responding to a relative GDD of 95 and 135 fs2. These relat-
ive GDD values are higher than predicted from the ray-tracing
simulation (see appendix ‘Laser chain STC simulation’);
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Figure 4. Measured near-field intensity temporal width across the beam and corresponding semi-transparent fitted surfaces. (a),
(c) Uncorrected case and (b), (d) corrected case with the doublet. The beam intensity is encoded in the color of the surface. The x–y
cross-sections of data points and surfaces are shown in (c) and (d), and in the corresponding planes of (a) and (b).

Table 2. Extracted fit parameters for pulse width for uncorrected
and corrected cases.

No doublet With doublet

FWHM0 ( fs) 24.6± 0.64 24.46± 0.68
Lx (fsmm−1) −0.013± 0.022 0.0063± 0.0231
Ly (fsmm−1) 0.0031± 0.022 −0.0247± 0.0231
Q (fsmm−2) 0.0025± 0.0013 0.0040± 0.0014

however, additional broadening could be explained by spec-
tral narrowing toward the beam’s edge.

4.3. PFC focal spot simulation

Next, we used the measured STC parameters to evaluate spa-
tiotemporal intensity at the far-field by numerical simulation.
For simplicity, we used relative GDD as the only broaden-
ing source estimated from the quadratic slopes in table 2.
Cross-sections of the simulated space-time intensity profiles
are shown in figure 5; Columns (a), (c), (f) and (b), (d), (g)
correspond to doublet uncorrected and corrected cases, with
row (a), (b) corresponding to near-field, row (c), (d), (e) to

the far-field spatiotemporal intensity, and row (f), (g), (h) cor-
responding to time-integrated intensity. As can be seen in the
near-field intensity cross-section along the optical axis in (e),
the PFC, which is dominant in the uncorrected case, reduced
the peak intensity by a factor of 1.15 from the corrected case.
The temporal width of the uncorrected case was larger by a
factor of 1.04. Thus, as can be seen from time-integrated far-
field intensity cross-sections (h), the larger PFC term in the
uncorrected case reduced the focal spot intensity of the beam
by a factor of 1.12.

4.4. One-shot PFT measurement technique

As mentioned above, prior to data gathering with the scanning
STC measurement method described in this paper, a one-shot
measurement technique was used to align the optics to minim-
ize PFT and to eliminate PFC in the corrected PFC case. We
demonstrate this technique for the case of fast PFT measure-
ment. A similar measurement of PFC would differ only in the
mask used. This one-shot technique is based on beamlet delay
which is extracted directly from the internal structure of the
far-field interference (similar to far-field slits interferometry
[29, 30]). For this, we use a modified beamlets selector (‘PFT

6
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Figure 5. Simulated spatiotemporal intensity cross-sections at near (a), (b) and far-field (c), (d) based on measured STC parameters, with
time-integrated far-field intensities (f), (g). Columns (a), (c), (f) and (b), (d), (g) correspond to uncorrected and doublet corrected cases,
respectively. (e) Far-field intensity along the time axis. (h) Far-field time-integrated intensity along the X-axis.

tool’), amaskwhich selects two symmetrical off-axis beamlets
(see appendix ‘Beamlet selector’). As we show in section 5,
equation (12), the interference of two beamlets that are separ-
ated by ±x1 from the axis results in a pattern that has a par-
ticular structure. If two beamlets have no delay between them
(no PFT) the pattern is symmetric. However, in the case of a
delay of 2τ1 between them (such that the PFT = τ1/x1) the
internal structure of the fringe is shifted by ξ1 = τ1cf/x1 with
respect to the main envelope. Therefore to evaluate the PFT it
is sufficient to determine the shift of the internal fringe peak
ξ1 in the far field. From the shift, we extract the value of the
PFT: PFT= ξ1/cf, where c is speed of light in vacuum and f
is the focal distance of the focusing optics.

We evaluate PFT for the corrected case and choose beam-
lets which are located close to the beam’s edge (2|x1|=
54mm), symmetrically from the beam center. The interference
patterns for the Y and X axes, shown in logarithmic scale, are
depicted in figures 6(a) and (b) and their corresponding cross-
sections are in (c) and (d). It can be seen that the internal fringe
envelope in X-axis is shifted by approximately 90µm, while
the fringe pattern along the Y-axis is nearly symmetric. This
corresponds to |PFTx| = 0.15 fsmm−1 and |PFTy| = 0 which
in a good agreement with values obtained in the scan (see the
second column of the table 1). In addition, the transverse pos-
ition of the doublet affects the PFT of the beam; we placed it
at a transverse position inside the beam expander such that it
closely matched the PFT of the uncorrected case.

In the PFC case, we used the same beamlet selector used in
the robust method, which selects one central and one off axis
beamlet. Then, by symmetrizing the fringe pattern, similarly to
the PFT tool alignment, we minimized PFC by optimizing the

longitudinal doublet position inside the beam expander. How-
ever, in the case of PFC, this measurement is more sensitive
to the misalignment of the mask with respect to the beam, and
thus careful alignment is required.

5. Analytical model

The analytical derivation for beamlet cross-correlation is
derived in 1D for simplicity. We describe a system in which
an ultra-short beam with STC impinges on a perforated mask
with two holes, one in the center and another in position x1.
For simplicity, the beamlets are assumed to be Gaussian in
space, with width σ0. The complex spectral amplitude of the
two beamlets after the mask is:

A(x,ω) = A0(ω)exp

(
− x2

2σ2
0

)
+A1(ω)exp

(
−−(x− x1)2

2σ2
0

)
.

(3)

We assume that intensity and STC are slowly varying along
the beam and, therefore, the spectral and spatial dependen-
cies of each beamlet are separable. The spectral dependence
of the beamlets is described by a Gaussian spectrum centered
around ωc with a bandwidth cB. The ‘global’ spectral phase
which is the same for both beamlets is omitted because it will
be canceled out in cross-correlation. We consider the relative
linear spectral phase, which, in the time domain, is the relative
delay between the beamlets and is labeled as τ 1. The spectral
dependencies of the beamlets are:

7
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Figure 6. Beamlets interference patterns used to evaluate PFT of the beam along X-axis (a) and Y-axis (b) and their corresponding
cross-sections (c) and (d).

A0(ω) = exp

(
− (ω−ωc)

2

2c2B

)
(4)

A1(ω) = RA0(ω)exp(iτ1(ω−ωc))exp(iτ1(ωc)) . (5)

The iτ1(ω−ωc) is the phase which corresponds to a group
delay between the beamlets, where iτ1(ωc) is the constant
phase difference between the beamlets. R= |A1(ω)|/|A0(ω)|
is the relative amplitude, which accounts for the fact that the
beamlets are generated from a beam which has a non-uniform
spatial profile. We omit, for simplicity, specifying the complex
conjugate terms needed for accurate mathematical description
of the pulses in time and frequency.

To calculate the complex spectral field of the beamlet pair
on the focal plane we use the Fraunhofer integral [36]

Af(ξ,ω) =
ˆ

ω
exp(ikf)
i2πcf

exp

(
ik
ξ2

2f

)
A(x,ω)exp

(
−ikxξ

f

)
dx

(6)

where k= ω/c is the k-vector, f is the focal distance of the
focusing optics, and x, ξ are the coordinates in the near and
far fields respectively. The spatial integral over the x coordin-
ate reduces to a Gaussian (Fourier transform of a Gaussian
is a Gaussian). The x1 shift of the off-centered beamlet cor-
responds to a linear phase in the far field. For simplicity,
we assume a narrow spectral bandwidth cB/ωc ≪ 1 so that

the spatial dependence is dictated by a central wavelength
k→ kc:

A0 :

ˆ
exp

(
x2

2σ2
0

)
exp

(
−ikxξ

f

)
dx∝ exp

(
−k2cσ

2
0

2f 2
ξ2
)
(7)

A1 :

ˆ
exp

(
(x− x1)2

2σ2
0

)
exp

(
−ikxξ

f

)
dx∝ exp

(
−k2cσ

2
0

2f 2
ξ2
)

× exp

(
− ix1kc

f
ξ

)
. (8)

The first terms in the Fraunhofer integral can be omitted
since they do not affect the final result: ω/2πcf is constant
under the narrow bandwidth approximation, and the phase
terms exp(ikf)/i and exp(ikξ2/2f) disappear when moving
from field to intensity. The final expression is

Af(ξ,ω)∝ exp

(
− (ω−ωc)

2

2c2B

)
×
[
1+Rexp

(
i

[
(ω−ωc)τ1 +ωcτ1 −

x1k
f
ξ

])]
× exp

(
−k2cσ

2
0

2f 2
ξ2
)
. (9)

Therefore the complex field in space-time in the far field is

Af(ξ, t) =
ˆ

exp(iωt)Af(ξ,ω)dω. (10)

8
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It can be proved that, up to constants, the far field intensity
integrated over time is

If(ξ) =
ˆ

|Af(ξ, t)|2 dt= exp

(
−σ2

0ω
2
c

c2f 2
ξ2
)

×

[
1+R2

2
+Rexp

(
−c2B

4

(
τ1 + ξ

x1
cf

)2
)

× cos

(
ωc

[
τ1 + ξ

x1
cf

])]
. (11)

A closer look at the final expression shows that it corres-
ponds to a localized fringe pattern with an internal structure.
The first exponent determines the overall envelope, which is
Gaussian. The internal structure consists of fringes with spa-
tially varying contrast. The fringe spacing is determined by the
argument inside of the cosine: the k-vector difference between
the test and reference beamlets. The fringe contrast shape is
determined by the second Gaussian exponent which has the
delay τ 1 in the argument.

It is easy to extend this result to obtain the equation of far
field intensity (equation (11)) for two beamlets which are sep-
arated symmetrically from the optical axis at−x1 and x1, hav-
ing delay −τ1 and τ 1 (as is the case with the ‘PFT tool’):

Ifsym(ξ) =
ˆ

|Afsym(ξ, t)|2 dt= exp

(
−σ2

0ω
2
c

c2f 2
ξ2
)

×

[
1+R2

2
+Rexp

(
−c2B

(
τ1 + ξ

x1
cf

)2
)

× cos

(
2ωc

[
τ1 + ξ

x1
cf

])]
. (12)

It is convenient to perform a spatial Fourier transform of
the fringe pattern intensity If(ξ) over the spatial coordinate ξ.
The reciprocal coordinate (or spatial frequency) is labeled kξ

Ĩf(kξ) = F(If(ξ)). (13)

As expected the Fourier transform of the intensity fringe
pattern (which has no phase by definition) consists of a DC
peak and two sidebands. It could be shown that the normalized
spatial Fourier transform of the fringe pattern is:

Ĩf(kξ) = exp(aDC)+ΓSB[exp(aSB1)+ exp(aSB2)] (14)

where

aDC =−
c2f 2k2ξ
4σ2

0ω
2
c

(15)

aSB1,2 =− [cBτ1σ0ωc]
2 +(cfkξ ±ωcx1)

2 + iτ1[x1c
2
Bcfkξ ∓ 4σ2

0ω
3
c ]

4σ2
0ω

2
c + c2Bx

2
1

.

(16)

As we can see, the amount of group delay τ 1 between the
beamlets is present in the argument of the exponent of the side-
bands, affecting the amplitude and the phase.

The relative amplitude of the side-bands is

ΓSB =
R

(1+R2)

√
1+ c2Bx

2
1

4σ2
0ω

2
c

. (17)

To invert the relation, we solve the quadratic equation and
get

R=

1−
√
1−Γ2

SB

(
4+ c2Bx

2
1

σ2
0ω

2
c

)
ΓSB

√
4+ c2Bx

2
1

σ2
0ω

2
c

. (18)

If we look at themaxima of the sidebands, located at |cfkξ ±
ωcx1|= 0, they have a Gaussian dependence on the delay. The
delay τ 1 is composed of the delay from the STC and from the
delay imposed by the piezo actuator. In other words, when τ 1 is
zero, the two beamlets are synchronized. Therefore, scanning
the delay with a piezo and finding the maximum reveals the
STC delay. The Gaussian dependence is shown below:

exp

− 1

2
(

2
c2B
+

x21
2σ2

0ω
2
c

)τ 21
= exp

(
− 1
2σ2

fc

τ 21

)
. (19)

Under this Gaussian approximation, when the temporal width
of the two beamlets is the same, their cross-correlation at
x1 = 0—which is equivalent to the autocorrelation—is twice
as large as the intensity of the transform limited pulses σ2

TL =
1/2c2B, which agrees with the field autocorrelation theorem
[37]. Per the same theorem, our measurement is insensitive to
a common phase between the two beamlets. Thus, this method
cannot measure global spectral phase such as global GDD.

However, relative spectral phase (or relative spectral nar-
rowing) which broadens the pulse can be estimated. Assume
relative GDD βr(x1), which broadens only one of the beam-
lets. It can be shown that the beamlet cross-correlation takes
the form

exp

(
− 1
2σ2

bc

τ 21

)
= exp

− 1

2
[

2
c2B
+

x21
2σ2

0ω
2
c
+

c2Bβr(x1)2

2

]τ 21
 .

(20)

In order to get the pulse intensity in time we raise the cross-
correlation to the fourth power so that we get the same width
as for a transform limited intensity pulse:

exp

(
− 1
2σ2

bc

τ 21

)4

= exp

(
− 1
2σ2

bc4

τ 21

)
(21)

σ2
bc4 =

1
2c2B

+
x21

8σ2
0ω

2
c
+
c2Bβr(x1)2

8
. (22)

The width squared of the beamlet cross-correlation raised
to the fourth power, σ2

bc4, consists of three terms: the trans-
form limited σ2 = 1/2c2B, a geometric broadening factor and a
relative GDD broadening factor.
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6. Conclusions and outlook

In this paper, we presented a novel STC measurement tech-
nique based on beamlet cross-correlation that we used to
characterize the spatiotemporal pulse front of our 100 TW
laser. We found that our laser pulse front is dominated by
PFC, which reduces the peak intensity at the focus. A spe-
cially designed doublet was shown to almost completely
suppress the PFC. In addition, we introduced fast, one-shot
pulse front measurement tools based on the beamlet’s inter-
ference in the far-field. With the aid of these tools, we
aligned the compressor to minimize PFT in x–y and found
the optimal position of the corrective doublet for suppressing
the PFC.

The advantage of the proposed method is its simplicity: it is
straightforward to understand, relies on conventional optics—
with the exception of the beamlet selector and the delay
mirror—and is based on a standard ‘focal spot’ diagnostic. As
we showwith our analytical model, themethod has straightfor-
ward post-processing, which can be easily implemented from
scratch. The method allows for the direct measurement of the
spatiotemporal pulse front and spatially varying pulse dura-
tion, without the need to rely on iterative algorithms. In addi-
tion, the method is not intrusive and is easily scalable for vari-
ous beam sizes, and can thus be implemented in nearly any
optical setup.

The usage of thismethod in temporally comparing beamlets
along the focal line allows for the measurement of the group
velocity of the energy deposition of optics with extended focal
depths [31, 32].
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Appendix

Beamlets cross-correlation spectrum and deconvolution
factor

In our experiment, the spectrum is a double peak rather than
Gaussian (see figure A2(c)). Therefore, the beamlet cross-
correlation width σbc4 is not exactly the same as the intens-
ity temporal width. We calculate the deconvolution factor
which properly scales the beamlet cross-correlation width σbc4
with the pulse temporal width. For this we cross-correlate
the Wizzler measured field with itself (autocorrelation), raise
the result to the fourth power and compare it with the field’s
intensity width (see figure A1). We get that for our spectrum,
σbc4 is smaller by a factor of 1.27 compared to the intensity
width σ.

Delay mirror

The segmented delay mirror assembly is depicted in figure A3.
The assembly is based on a common 4′′ mount (Thorlabs KS4)
which holds the main 4′′ diameter 15mm thick plane mirror.
The mirror has a central hole with a diameter of 18mm. The
hole, with the help of an o-ring, serves as an attachment for
the piezo stack. This assures that the axis of tilt is as close
as possible to the surface of the large mirror figure A3(c). The
homemade holder for the piezo actuator allowed for independ-
ent control of the central segment mirror with respect to the
large mirror. For the central mirror, we used a 1/2′′ diameter
mirror (Thorlabs PF05-03-P01). We used a piezo stack (PI-P-
840) which has nanometric precision over a 90µm range. The
piezo stack has a position sensor and is operated in a closed-
loop. The compact size of the assembly allows for easy and
non-intrusive installation in nearly any experimental setup.

For the case of non-zero reflection from the central mirror,
the path difference depends on the angle. Consider a ray which
is impinging on the mirror at an angle α and the mirror is shif-
ted by a distance of d. The total delay difference dtot as can be
seen in figure A4 is composed of p1 + p2

dtot =
d

cos(α)
(1+ sin(90− 2α)). (A1)

Beamlet selector

The beamlet selector is presented in figure A5 and consists
of two main parts: aperture disks and a holder. The disks
have a 100mm diameter and are laser cut from 3mm Delrin
plates (figure A5). Both disks were sanded to roughen the sur-
face to achieve diffusive reflection of the blocked laser beam.
One disk has radially distributed holes of 2.65mm diameter
(right hand side on figure A5(a)); the holes were beveled to
increase angular acceptance. The second disk consists of spir-
ally oriented holes with a diameter of 5mm (left hand side on
figure A5(a)). When the disks are superimposed, the central
hole stays open (reference beamlet), and the relative orienta-
tion of the disks allows radial selection of the second opened
hole (test beamlet). The orientation of both disks together sets
the angle of the test beamlet. The disk holder is 3D printed
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Figure A1. Field auto-correlation raised to the fourth power compared to intensity: (dashed blue) Wizzler measured intensity, (red)
auto-correlation raised to the power of four of the field derived from Wizzler measured intensity, (green solid) re-scaled autocorrelation
raised to the power of four which matches the measured intensity.

Figure A2. Temporal and spectral intensities. (a) Normalized beamlet cross-correlation envelope data (circles) and interpolating curve
(solid). (b) Beamlet cross-correlation envelope raised to the fourth power (solid blue) plotted with Wizzler measured (dashed red) and
transform-limited (TL) (solid red) temporal intensities, and fiber-coupled spectrometer (Ocean Optics) TL pulse (solid green). (c) Spectral
intensity from Fourier transform of beamlet cross-correlation (solid blue), with Wizzler (solid red) and fiber-coupled spectrometer (solid
green) spectra.

using Polylactic Acid (PLA) and holds the two disks securely
(figure A5(b)). The holder has a special bump (marked in
red) that snaps to the notches made at the edges of the disks
(figure A5(d)). This allows for precise selection of test beamlet
for a discrete set of radii and angles, as shown in figure A5(b).

Laser chain STC simulation

We simulated the STCs of the laser chain at WIS and the
correction of PFT by a special doublet using the Zemax
OpticStudio ray-tracing software. We considered only three
refractive telescopes, even though the WIS laser consists of

more beam expansion stages. This choice was motivated by
the fact that the PFC induced by the beam expander (assum-
ing the same material for both lenses) depends on the beam
size and focusing properties of the lenses [38]. Since all our
telescopes have similar focusing properties, the PFC is pro-
portional to the beam size. Therefore, the earlier stages, in
which the beam radius is small, play a negligible effect in
the STC and are thus ignored. In the last beam expander,
the beam size is largest and, therefore, most of the STC is
accumulated there. The system is shown in figure A6. The
simulation begins with a broad spectrum beam with perfect
spatial phase and no STC which is gradually expanded by
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Figure A3. Segmented delay mirror assembly. (a) Front view: the central segment (marked in red) position is controlled with the piezo
stack. (b) Rear view: the mirror has independent angle control for the central segment and both mirrors together. (c) The assembly
cross-section is shown, with a marked central segment mirror, piezo stack, and o-ring which holds it inside the primary mirror.

Figure A4. The geometrical scheme used in the calculation of delay imposed on the optical path for the non-zero reflected ray.

Figure A5. Beamlets selector and ‘PFT tool’ masks. (a) Beamlet selector mask selects on-axis and off-axis beamlets. (b) A pair of beamlets
selected for a specific angle and radius. (c) ‘PFT tool’ mask which selects two off-axis beamlets. (d) 3D printed plastic mount holds the pair
of disks. The special bump (marked in red) snaps the disks to chosen position.
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Figure A6. Optical system used for the laser chain STC simulation. The system consists of four telescopes (beam expanders) and a
corrective doublet which is located inside of telescope 3. The numbering of the telescopes, lenses and their radii are from left to right.
Telescopes 1–3 are refractive and telescope 4 is an ideal telescope which has no dispersion.

Table A1. Technical details of the refractive telescopes.

(Distance
units are mm) Telescope 1 Telescope 2 Telescope 3

Magnification 1.37 2.20 1.43
Lens 1
(F. silica)

R1 0 0 5

R2 305 150 330
Thickness 5 5 5
Lens 1–2
separation

250 395 320

Lens 2
(F. silica)

R1 420.2 325.5 472.4

R2 0 0 0
Thickness 10 8 10

Table A2. Technical details of the correction doublet.

(Distance units are mm) Lens 1 Lens 2

Glass (CDGM) H-ZF1 H-K9L
R1 0 306
R2 306 −1331
Thickness 7 11
Lens 1–2 separation 2.55

refractive Galilean telescopes—labeled telescope 1–3—and
accumulates STC with minor spatial aberrations. STC cor-
rection is applied via a specially designed doublet, inserted
inside telescope 3. Precise element-wise details about the tele-
scopes are depicted in table A1, and the corrective doublet is
described in table A2. In the real system, the beam propagates
around 21m before reaching the focusing parabola. Since the
beam diverges slightly, this results in an increase of its size by a
factor of 1.2. We have verified by ray-tracing that the flat glass
window and compressor (assumed aligned) introduce negli-
gible STC to the beam; therefore, we did not consider them
here. Also, we did not consider amplification crystals between
the telescopes. We simulated the divergence in free space as
‘Telescope 4’—a perfect dispersionless beam expander. The
induced PFC will be overestimated compared to the measured
one if the dispersionless beam size growth is not included in
the simulation.

We modified the macro [39] for Zemax OpticStudio to cal-
culate pulse group delay, group velocity dispersion, and third-
order spectral phase across the beam. For each position in
the beam, the macro traces rays in the vicinity of the cent-
ral wavelength (800 nm in our case) and calculates the optical
path. Then, using derivatives, it approximates relevant disper-
sion parameters. We consider only a radially symmetric case
since we assume perfect alignment and optics. The results of
the simulation are depicted in figureA7. The group delay along
the beam is shown in figure A7(a). As can be seen, without the
corrective doublet, the simulated beam has PFC (the central
part of the beam is delayedmore).When the corrective doublet
is present, the curvature is suppressed. By fitting to a parabola
we get the value of the PFC: PFC = −0.0243 (fsmm−2) and
PFC = 0.0011 (fsmm−2) for the uncorrected and the correc-
ted cases respectively. The doublet position inside of telescope
3 mimicked the position it had in the experiment described in
this paper. The doublet introduces a small focusing termwhich
is corrected by adjusting the position of the focal plane of
the final focusing parabola (several mm with 2m focal length
parabola). The doublet introduces negligible aberrations at all
positions inside the telescope; thus, the beam remains almost
diffraction-limited.

In the same figure, we show the accumulated phase dif-
ference, as a function of radius, of a 800 nm monochromatic
wave propagating through this optical setup. We can see that
the phase difference is close to zero. Assuming an 800 nm
wave propagating in vacuum, the value of the phase and the
delay differ only by a numerical factor and thus, the figure
shows both the phase and the delay as a function of radius.
The quadratic focusing term from the prior optics in the simu-
lation is eliminated by adjusting the last lens of telescope 4. In
the real system, the curved spatial front of the diverging beam
is compensated by focal distance adjustment of the focusing
mirror. In figure A7(b) higher orders of dispersion as a func-
tion of radius are presented. As seen in both the uncorrec-
ted and corrected cases, the simulated beam gets some relat-
ive group delay dispersion (GDD) and third order dispersion
(TOD) which broadens the pulse but is negligible in our case.
This stems from the fact that the beam is gradually expanded
through the telescopes, which have the same dispersion (same
glass) but radially differing thickness of glass and angle of

13



J. Opt. 24 (2022) 115503 S Smartsev et al

Figure A7. Simulated relative values of dispersion along the beam. (a) Group delay (solid) and phase (dashed) for 800 nm with (blue) and
without (red) corrective doublet. (b) GDD (solid) and TOD (dashed) with (blue) and without (red) corrective doublet.

Table A3. Global dispersion values at r = 0mm.

Group delay (ps) GDD (fs2) TOD (fs3)

No doublet 4357 1545 1156
With doublet 4392 2923 2069

incidence. This causes the central part of the beam to propag-
ate through more glass and accumulate more group delay and
more relative GDD and TOD than the outer parts of the beam.
In the corrected case, special glasses and curvatures are used
in the doublet to cancel the PFC; however, the relative GDD
and TOD are slightly over-corrected. The relative dispersion
values, related to r = 0mm, are presented in table A3 along
with the global dispersion values at r = 0mm.
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