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There is a significant disagreement between the experimental and theoretical plasma Stark shift of the
hydrogenlike helium Paschen-α line (λ = 468.568 nm). Here, it is demonstrated that the controversy can be
resolved by accounting for the plasma polarization shift and other related effects arising from the charged
plasma particles penetrating the wave-function extent of the bound electron. For experimental verification, a
laser-induced helium plasma with ne = 1.50 × 1024 m−3 and Te = 68 200 K, as independently determined by
using the Thomson scattering method, was studied. Excellent agreement is observed between the theoretical and
experimental line width and line shift, and more generally, for the entire line shape.
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I. INTRODUCTION

Hydrogenlike atoms are the simplest and best understood
one-electron atomic systems and indeed the first ones to which
the quantum description—first of the “old” Bohr theory [1],
then modern quantum mechanics [2]—was applied and tested
against. A quantum mechanical explanation of the Stark effect
in hydrogenlike atoms followed immediately [3].

However, the plasma-caused Stark broadening [4] is a
rather complex phenomenon, and even for hydrogenlike tran-
sitions it remains a topic of active research [5]. In particular,
there is a significant disagreement between the experimental
and theoretical plasma Stark shift of the He II Paschen-α
line (a transition between levels with the principal quantum
number n = 4 and n = 3) [6]. Unfortunately, there is also a
similar scatter between the results of different experiments
[6–12].

The experimental determination of the Stark shift is one of
the most difficult measurements, requiring high experimental
precision, including wavelength calibration and appropriate
data processing procedures. Otherwise, the accuracy quoted,
as in the above-mentioned studies, is usually a few dozen
percent. Furthermore, the shift depends almost linearly on the
plasma free-electron density ne which must be obtained in-
dependently [13]; evidently, the uncertainty in this parameter
(usually �10%) adds to the total error bars. These significant
experimental uncertainties make comparisons with theoretical
results debatable.

In a recent study [6], it was suggested to analyze the
shift-width relation instead of the shift and width separately
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as a function of the plasma density. This approach eliminates
the explicit dependence on ne and the associated uncertainties
from the consideration and, by choosing a sufficiently dilute
“reference” plasma, avoids the need for absolute wavelength
calibration. Within the error bars, the results agreed with
some previous studies [10,11] and allowed testing theoretical
results plotted on the same “shift-width” graph. The compar-
ison indicated that the calculations significantly, by ∼40%,
underestimated the shift.

Here, it is shown that the disagreement can be resolved
by accounting for the plasma polarization shift (PPS) [14]
and other related effects arising from penetrating collisions.
Although the importance of PPS for He II Paschen-α was
understood long ago [15], the effect has been calculated so
far outside the line-broadening framework, often based on
statistical considerations; not surprisingly, there is a wide
divergence in the PPS values given by different authors (see
Ref. [10] and references therein). Instead, the present calcu-
lations are performed using line-shape computer simulations
(CSs) [16] treating ions and electrons on an equal footing,
recently modified to account for the full Coulomb interac-
tion between the radiator and the plasma perturbers [17].
The calculations are verified against new data obtained in a
dedicated benchmark experiment with a laser-induced plasma
well characterized using the Thomson scattering (TS) method.

II. EXPERIMENT

The experimental setup is shown schematically in Fig. 1.
A vacuum chamber is evacuated below 10−5 mbar and
then filled with pure helium at 1500 mbar. The plasma is
created in the center of the chamber by tightly focusing
second-harmonic (λ = 532 nm) Q-switched Nd:YAG laser
pulses (4.5 ns duration, 115 mJ energy, and 10 Hz repetition
rate) with a 75-mm focal length aspheric lens. For plasma
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FIG. 1. Experimental setup.

diagnostics using the Thomson scattering method, another
second-harmonic single-mode (<0.5 pm spectral width, 6 ns
duration, and 10 Hz repetition rate) Nd:YAG laser is used.
To avoid heating the plasma by the laser pulse in the inverse
bremsstrahlung process, its energy is attenuated to 5 mJ using
a Rochon prism polarizer and a half-wave plate. This probe
laser beam, focused at a spot of about 100 μm in diameter
in the plasma volume, propagates orthogonally to the one
creating the plasma, henceforth called the pump beam, and is
polarized perpendicularly to the direction of observation. The
delay between the two laser pulses is controlled by a digital
delay pulse generator with an accuracy better than 200 ps.

Plasma radiation and laser scattering (LS) light are ob-
served perpendicularly to the laser beams by imaging the
investigated plasma region onto the entrance slit of a Czerny-
Turner spectrometer (750 mm focal length) equipped with
a gated two-dimensional intensified charge-coupled device
(ICCD). Instrumental profiles are determined using different
cw laser sources and are well approximated by a pseudo-Voigt
function with a full width at half maximum (FWHM) of
0.30 nm (≈14 cm−1). The spectral sensitivity of the optical
and detection systems is determined with a calibrated halogen
lamp. Special attention is paid to wavelength calibration. For
this purpose, atomic He and Xe spectral lines, appearing in the
spectral range that covers the studied line He II Paschen-α, are
used. These lines are observed in a laser-induced plasma cre-
ated in the same chamber in the He-Xe mixture at atmospheric
pressure and at late stages of its evolution. The uncertainty of
the wavelengths, determined in this way, is 0.03 nm.

Optical signals are recorded 40 ns after plasma initiation
with an ICCD gate width as short as 5 ns and averaged over
15 000 laser shots. The short gate width brings the studied
plasma closer to the quasistationary state and increases the
signal-to-noise ratio of the LS light as well. The latter is
also improved by insertion of the polarizer into the path of
measured light.

Images of the measured LS and plasma emission spectra,
corrected for the spectral sensitivity of the experimental sys-
tem and with the CCD dark-current and plasma continuum
background subtracted, are shown in Fig. 2. The LS spectra
have a high spatial resolution, limited only by the size of the
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FIG. 2. Images of laser scattering (LS) spectrum obtained with
the probe laser at 532 nm (a), and of plasma emission with the He
II Paschen-α spectral line recorded for a delay of 40 ns between the
pump and probe laser pulses (b).

probe laser beam in the interaction area, whereas the emission
spectra are laterally integrated and require an inverse Abel
transform to recover the radially resolved spectra correspond-
ing to the LS ones. Because of the high electron number
density and, consequently, the high plasma frequency, only
the redshifted part of the TS electron feature is recorded.

III. THEORETICAL MODEL

Briefly, the Coulomb radiator-plasma interaction for a one-
electron radiator with nucleus charge ZN is approximated by a
Debye-screened potential

VRP =
∑

σ

Zσ

∑
p∈σ

(
ZN e−κσ r

rp
− e−κσ |�ra−�rp|

|�ra − �rp|
)

≡ Vnet + VI ,

(1)
with Vnet the interaction of the plasma with the net radiator
charge,

Vnet = (ZN − 1)
∑

σ

Zσ

∑
p∈σ

e−κσ r

rp
, (2)

and VI the interaction with the internal states of the radiator,

VI =
∑

σ

Zσ

∑
p∈σ

u(�ra, �rp; κσ ), (3)

where

u(�ra, �rp; κ ) = e−κrp

rp
− e−κ|�ra−�rp|

|�ra − �rp| . (4)

These expressions account for different inverse screening De-
bye lengths κσ for different plasma species σ with charge
Zσ . �ra and �rp are positions of the bound electron and the pth
perturber, respectively.

Vnet governs the dynamics of plasma particles in molecular-
dynamics (MD) simulations based on the velocity Verlet
algorithm [18], and results in a time series of VI (t ) according
to Eq. (3). Coulomb interactions between plasma particles
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are accounted by the effective potential, Eq. (1). Such “triv-
ial” MD simulations provide accurate results for weakly to
moderately coupled plasmas [19]. Vnet causes some electrons
to move along closed orbits, resulting in the thermodynami-
cally sound electron radial distribution function [17]. For the
line-shape calculations, however, these classically “bound”
electrons are excluded during the initial MD seeding. Instead,
a correct ion charge-state balance is enforced by including
singly and doubly ionized He atoms in the proportion given
by a collisional-radiative model [20].

The evolution of the radiator dipole operator is obtained by
solving the Heisenberg equation

−ih̄
∂

∂t
�d (t ) = [H (t ), �d (t )], (5)

with the time-dependent Hamiltonian

H (t ) = H0 + VI (t ), (6)

where H0 is the Hamiltonian of the unperturbed radiator. Fi-
nally, the line shape is given by

I (ω) ∝
∑

i f

〈| �d f i(ω)|2〉, (7)

where �d (ω) is the Fourier transform of �d (t ), the sums are
over the initial and final states i and f , respectively, and the
plasma average denoted by the angle brackets is accomplished
by averaging over CS runs.

The principal improvement of these calculations as com-
pared, for example, to those from Ref. [6], is the evaluation of
the matrix elements of Eq. (4) exactly, in particular, preserving
the monopole interaction. This is contrary to the “standard”
multipole expansion, which assumes ra 
 r and raκ 
 1, and
begins with the dipole term. This exact treatment is applied
to all perturbers with r < Rexact = 3 × 10−7 cm and the usual
multipole expansion, including the long-debated ∝�∇ · �F term
[21], outside of this range. The Rexact chosen exceeds the typi-
cal ra of the n = 4 states by an order of magnitude, ensuring a
good numerical match of the two approaches at the r = Rexact

boundary.
There are two contributions to the line shift: the nonlinear

Stark effect due to the Stark mixing between states with dif-
ferent principal quantum numbers n (so-called “quenching”
collisions) and nondipole (mainly monopole and quadrupole)
interactions between the bound electron of the radiator and the
charged plasma particles. The first contribution was already
taken into account in the calculations presented in Ref. [6].

Each of the contributions is computationally heavy; simul-
taneously accounting for both of them results in computa-
tional complexity of the next order, making such calculations
impractical. Instead, the two contributions are calculated sep-
arately and combined assuming additivity of shifts and widths
(see Sec. V for a discussion). This approach is demonstrated in
Fig. 3. Base calculations are the “standard” (without penetra-
tion effects) dipole approximation within the pure degenerate
atomic model, i.e., without coupling between bound electron
states with different n’s. This results in a fully symmetric line
shape with zero shift. Lifting the assumption of a degenerate
model yields a broader and shifted asymmetric profile. For
these calculations, all states with 3 � n � 6 were included in
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FIG. 3. He II Paschen-α shape calculated under various assump-
tions. The plasma parameters assumed are those experimentally
determined based on the TS diagnostics: ne = 1.50 × 1024 m−3 and
T = 68 200 K.

the Hamiltonian. Based on the analysis performed earlier [6],
it is estimated that the omission of levels with n < 3 and n > 6
introduced a minor uncertainty (∼5%) in the shift and even a
smaller uncertainty (2%–3%) in the width.

On the other hand, keeping the degenerate-model assump-
tion while using the full interaction results in a shifted line
shape, mainly due to the PPS. In particular, the width in-
creases almost negligibly (<1%) due to the cancellation of
various effects [17,22]. There is also practically no asym-
metry. This allows one to construct the final line shape by
applying this shift to the line shape obtained by quenching
the “standard” dipole approximation.

IV. RESULTS

The plasma parameters ne and Te were determined by
fitting the spectral density function, convolved with the in-
strumental profile, to the measured redshifted electron feature
of the TS spectrum. It is worth mentioning that unlike, e.g.,
optical emission spectroscopy, the results do not depend on
assumptions about the plasma thermodynamic equilibrium,
its chemical composition, or a selected plasma model, as is
the case in the line profile calculations. Details on the Thom-
son scattering technique and its application to the study of
laser-induced plasma and plasma Stark broadening of spec-
tral lines can be found in Refs. [23–27]. In the case of the
plasma studied, the complete analysis takes into account the
distribution of ne resulting from some plasma inhomogeneity,
its evolution over the measured interval, and a shot-to-shot
variability. These effects were included in the fitted function
assuming that ne is subject to a normal distribution. At the
same time, variations of Te are neglected, assuming their mi-
nor impact on TS signals. The values of ne and Te obtained
in this way amount to 1.50(17) × 1024 m−3 and 68 200 K
(5.88 eV), respectively, with the fit shown in Fig. 4.

The respective He II Paschen-α line profile is determined
by applying the inverse Abel transformation to the measured
chordal intensity distribution. This spectrum is then fit by
a sum of a Lorentzian and a linear function, with the lat-
ter representing the plasma continuum and the far wings of
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FIG. 4. A TS spectrum recorded at a delay of 40 ns on the plasma
axis with the probe laser of 532 nm (solid gray circles). The solid line
represents the theoretical model of the spectral density function. The
electron number density and temperature determined from the fit are
1.50(17) × 1024 m−3 and 68 200 K, respectively. The LS signal at
the probe wavelength (�λ = 0) due to the Thomson and Rayleigh
scattering is shown for comparison.

neighboring spectral lines. Finally, this linear function is sub-
tracted from the original experimental spectrum, leaving only
the He II Paschen-α shape (see Fig. 6) with the width (FWHM)
and the shift determined to be 3.09(2) and 0.23(3) nm, re-
spectively. Taking into account instrumental broadening and
negligibly small (0.044 nm) Doppler broadening, the Stark
width in this case is 2.78(2) nm.

TS analysis indicates a Gaussian-like distribution of ne,
resulting from either some plasma inhomogeneity or its evo-
lution over the measurement interval (or both). Consequently,
the theoretical line shape is obtained by averaging several line
shapes calculated for different values of ne with an additional
weighting factor proportional to the intensity of the Paschen-α
transition. To infer the latter, a collisional-radiative model is
used [20], assuming a steady-state plasma. The resulting den-
sity dependencies are shown in Fig. 5. It is seen that the Stark
width and shift are indeed approximately ∝ n2/3

e and ∝ ne,
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FIG. 5. Density dependencies of the He II Paschen-α plasma
Stark width and shift and the population of its upper level. The
lines are power-law best fits, with the exponents of 0.71, 0.94, and
1.85, respectively. All quantities are normalized to their values at
n0 = 1.50 × 1024 m−3.
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FIG. 6. A comparison of the experimental line shape and the
theoretical one, convolved with the instrumental function and the
Doppler broadening.

respectively [6], while the population of the upper level and,
hence, the line intensity is close to ∝ n2

e (see, e.g., Ref. [28]).
Eventually, the influence of the density distribution turns out
to be very minor due to the rather narrow distribution of ne

with a standard deviation of approximately 10%.
The width and shift of the resulting theoretical profile are

125 and −11.4 cm−1, respectively (2.76 and 0.250 nm in
wavelength units). The uncertainties in the width and shift
values are 5% and 15%, respectively (see Sec. V for some
details).

The experimental and theoretical line shapes are given in
Fig. 6. As seen from the comparison, the agreement is very
good.

V. DISCUSSION

The improvement in the line-shape calculations gained
by using the full-interaction Hamiltonian is demonstrated in
Fig. 7, where experimental data from recent measurements [6]
in a pinch plasma setup are also shown. Since no independent
plasma diagnostics was implemented in that study, a shift-
width parametric graph (with ne as an independent parameter
in the case of the theoretical curves) is made. Specifically,
the shift d versus the FWHM w raised to the power of 3/2
is plotted. With the width and shift dependence on ne being
approximately ∝ ne and ∝ n2/3

e , respectively, nearly linear re-
sulting plots are obtained. It is clearly seen that the dipole
approximation with the penetration effects neglected under-
estimates the shift significantly, whereas the full-interaction
calculations describe the experimental results very well. Note
that the theoretical curves in the figure are calculated for T =
4 eV, according to the assumption made in Ref. [6]. It is rather
plausible, however, that in pinch plasmas higher densities cor-
respond to higher temperatures, with the plasma polarization
shift decreasing. This may explain the minor, but apparently
systematic, deviation of the rightmost (i.e., corresponding to
the highest densities) experimental points from the theoretical
curve.
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In order to assess the accuracy of the theoretical approxi-
mation used (assuming that the PPS and the quadratic Stark
shift are additive), calculations were performed keeping only
the n = 3 and n = 4 states in the Hamiltonian. With such
a limited basis, a full calculation, including the quenching
terms, becomes doable. A comparison of this calculation with
the approximate one shows that the latter overestimates the
total shift by about 1 cm−1. This value constitutes a major
contribution to the inaccuracy of the calculated shift: First, the
〈n = 3|VI |n = 4〉 coupling contributes to both the upper and
lower levels of the transition, acting in the opposite direction,
that is, any associated inaccuracy is doubled. On the other
hand, the Stark shifts of the upper and lower levels due to any
other state, e.g., with n = 5, have the same sign and cancel to
some extent, and the higher n, the cancellation is stronger.

The other principal approximation is separation of the total
interaction VRP into Vnet and VI [see Eqs. (1)–(3)], inherent
for all semiclassical models of plasma line-shape broadening
[29,30], analytical and computer simulations alike. Although

well justified in the case of the “standard” multipole calcula-
tions of line broadening of degenerate, hydrogenlike radiators,
for penetrating collisions, this approximation introduces a
minor inaccuracy [17]: As a charged perturber penetrates the
wave function of the bound electron, its motion is governed by
the monopole interaction with an effective Z∗(r) (ZN < Z∗ <

ZN + 1), rather than ZN . Evidently, this correction affects elec-
trons and ions in the opposite directions, further enhancing
plasma polarization in the vicinity of the nucleus and increas-
ing the PPS. Thus, this approximation slightly underestimates
the shift.

Therefore, the two main sources of the inaccuracy—the
assumption about additivity of the Stark shift due to the
quenching and penetrating collisions, and variation of the
effective core charge close to the nucleus—are minor and,
furthermore, partially cancel. The total uncertainty in the cal-
culated shift is believed to be 1.5 cm−1 (≈0.03 nm in the
wavelength units).

VI. CONCLUSIONS

In order to resolve a significant discrepancy between
the theoretical and experimental plasma Stark shift of the
Paschen-α line in hydrogenlike helium, calculations are per-
formed, in which the interaction between the radiating atom
and the plasma is evaluated without relying on the multi-
pole approximation, taking into account penetration of the
plasma particles into the wave-function extent of the bound
electron. The calculations are compared to measurements in
a laser-induced plasma, which is accurately diagnosed using
Thomson scattering. The experimental and theoretical line
shapes compare very well, highlighting the importance of
nondipole, in particular, monopole, radiator-plasma interac-
tion terms for reliable calculations of the plasma Stark shift of
spectral lines in hydrogenlike ions.
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