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We discuss the screening of the external static electric field on the nucleus of the neutral atom. It is shown that for the excited

atomic states the screening is not complete.

Due to the well-known Schiff theorem [1] for the
neutral atom the external static homogeneous elec-
tric field is exactly screened on the nucleus by the
polarization of the electronic shells. The theorem is
valid for relativistic electrons [2,3]. Radiation cor-
rections do not violate the theorem [2]. One can
easily understand this theorem: the homogeneous
electric field does not accelerate the neutral atom.
Therefore the field acting on the nucleus is equal to
zero.

The physical arguments as well as formal proof of
the theorem are valid only for an atom in a station-
ary state. For the excited states which decay due to
photon emission the situation is not obvious. This
problem is connected with the radiation correction
to the energy levels.

First of all let us demonstrate simple physical ar-
guments in favor of the Schiff theorem violation for
unstable states *!. In the present work we will con-
sider the hydrogen atom with an infinitely heavy nu-
cleus to avoid the recoil. Let us consider the 2s,,,
state which decays via M 1-transition to the 1s, ,, state
(in the present work we are interested in one-quan-
tum transitions only). In the external electric field
there is a mixing with the 2p,,, state which decays
via E1 transition (fig. 1). We neglect the mixing with
the 2p;,, state. The decay amplitude corresponding
to fig. 1 equals

¥ We are grateful to V.V. Flambaum in discussions with whom
these arguments were formulated.
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Fig. 1. Amplitude of the 2s, ,,-state decay in the external electric
field. The cross corresponds to the states mixing in the field.
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Here & is the external electric field, I, is the radia-
tion width of the 2p,,, state,

hy=\/2n/w ea-ge* " (2)

is the operator of the radiation of the photon with
momentum k and polarization &, a is the Dirac ma-
trix. The use of relativistic notation is technically
convenient. A simple linear calculation in the & ap-
proximation gives the angular distribution of the
photons averaged over the polarizations of the atomic
states {see ref. [4]),

dW(k)=F25(1+Ak-&)%, (3)
where
4 L1EIL DI,
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Here E1 and M1 are the amplitudes of the y-tran-
sitions 2p,,,—1sy,, and 2s,,,- 18,2, D={2p,,,,
1| —ez|2s,,5, ) is the amplitude of the 2s-2p mix-
ing, I';=3w>*|M1]? is the one-photon width of the
2s, /o-state. Let us stress that correlation of flight di-
rection with the electric field k- & in (3) is T-odd.
Just therefore A is proportional to I',. With the an-
gular distribution (3) the photon takes away the av-
erage momentum directed along the electric field. The
recoil force is equivalent to the unscreened electric
field at the nucleus,

11
€N= 5;1&)21—'25@ . (4)

If the nucleus has an electric dipole moment d then
one may suppose that a correction to the energy level
should arise,

SE=—6y-d. (5)

Now we would like to understand what the energy
shift (5) means and how it can be observed. Let us
emphasize once more that 8E~ 1,0, i.e. OE arises
just due to the instability of the levels. At infinite
mass of the nucleus the only probe of an electric field
at the origin can be the electric dipole moment of the
nucleus. The interaction of this dipole moment with
the external field and with the electron is equal to

Hy=ed-r/r’—d-&= id- p, H], (6)
where
H=oap+pfm—e?/r—eé&-r (7

is the Dirac electron Hamiltonian. The external elec-
tric field is included into the Hamiltonian (7). To
emphasize this point we will denote its eigenstates by
a bar: H|a)=E,|A). The eigenstates of the total
Hamiltonian H+ H, will be denoted by the tilde:
(H+H,)|AY=E,|A>. Due to the Schiff theorem
E,=E,. Treating H, as a perturbation one can easily
calculate the matrix element of the radiation oper-
ator (2) between the tilde states,

(b Ay = (R, | + = d- Com) [y, p] 17

=(1—ik-d/e){m|h,| A . (8)
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We have used the representation of Hy in the com-
mutator form (6).

Now we can ask the question: Does the correction
(5) mean the shift of the 2s energy level which can
be observed in the resonant scattering of light on the
1s state of hydrogen? In the leading order in A, the
amplitude of the resonant scattering is shown in fig.
2, and due to eq. (8) it equals

f=(1+ik,-d/e) (1 —ik,-d/e)
o 181y (k) 128) (251 (k) |15

T ol I L)
WL =L T1U

(9)

where k, and k, are the momenta of the initial and
final photons. The amplitude (9) depends on d, but
this dependence is not connected with any shift of
energy. Moreover |f]? is independent of d. However,
it is obvious beforehand that in the leading order in
h, the shift 8E (5) cannot arise, since 3E ~ ' I 5.
One should consider at least the Lamb shift (fig. 3a),
and even the second order in the Lamb shift (figs.
3b-3d). Nevertheless one can easily verify that in
any order in the radiation correction there is no de-
pendence on d in the scattering amplitude except the
trivial one (9). Indeed, let us consider for example
the amplitude in fig. 3a. The insertion is the self-en-
ergy operator

Fig. 2. Amplitude of the photon resonant scattering in leading
order in H,.
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Fig. 3. Amplitude of the photon resonant scattering with the
Lamb-shift insertion.
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but due to eq. (8), the dependence on d in the ma-
trix element of &, exactly compensates that in the
matrix element 4, . In the same way we can prove
the independence of d of the insertions in the dia-
grams presented at figs. 3b-3d. Thus, there is no en-
ergy shift proportional to d which can be observed
in the resonant scattering of light in the atomic
ground state. Then the question arises: what does
formula (5) mean?

To answer this question let us first of all answer a
more simple one: What is the usual pressure of light?
Thus without any external static electric field the laser
shines on an atom in resonance with the transition
18,228 ,. The interaction of an electron with the
classical electromagnetic wave is of the form (cf. with
eq. (2))

V: | Z48RE V=) ,
Viti=led-qeitr—iot | (= (Y)+  (11)

A is the wave vector potential. The rescattering is
isotropic and therefore light pressure arises. This is
equivalent to a static electric field acting on the nu-
cleus. Due to balance of momentum at a small sat-
uration parameter (2p|V|1s) /I, <1,

rp
(w—awo)?+il%

Xfz;j|<2p|/2,a|V(+)|151/2,ﬂ>|2, (12)

1
JN=—;k

wWo =Eap,,, —E\s. 5, @, B= 1} are the projections of
the angular momentum. Similar to (5), an energy
shift proportional to d must arise. However, we ar-
gue above (eq. (10)) that there are no corrections
to the photon scattering amplitude proportional to
d. Thus we can conclude that the photon which pre-
pares the unstable quantum state cannot measure by
itself the recoil electric field (4), (12) on the nu-
cleus. However, a different experiment is possible.
Let the laser field (11) prepare the unstable quan-
tum state and the other field probe the atom. Say,
using the microwave field one can search for the de-
pendence of the nuclear-magnetic-resonance (NMR )
frequency on the nucleus electric dipole moment 4.

PHYSICS LETTERS A

9 September 1991

Just in such an experiment the recoil electric field
(4), (12) can be measured and exactly in this sense
the Schiff theorem is violated for the unstable quan-
tum states.

The shift of the NMR frequency due to the nu-
cleus electric dipole moment is equal to
SE=Tr(H4p). Here p is the density matrix of an
atom in the laser field (11) and Hj is defined by eq.
(6). We will solve the equation for the density ma-
trix by iterations in the perturbation ¥ (see e.g. ref.

[51),
(10/0t—wp)pu+iTulpu—p ) =V, pla, (13)

pie) is the equilibrium density matrix. In our case
p© corresponds to the equal population of the states
[1s),2, 4> In first approximation the positive and
negative frequency components of p arise:

P po1,
Pik —‘—_'[__“——p—]k. (14)
FTo—wx iy

The effect we are interested in arises in the second
approximation. The time-independent components
of p® are equal to
1
— ([P0 1 [V, 00 1)
ik

l (15)

P =-

The further calculation is straightforward:
SE=Tr(Hyp®)=2d" T [p, Hlupf?
: ik
== d- Te([p, VO 1o+ [p, V0 1p)

=—id-kTr(V‘*’p“"—p“*)V(—’). (16)

After the substitution of p¢!) from eq. (14) we really
get OE = —d- &, with &y from eq. (12).

We now return to the Schiff theorem (formulae
(4) and (5)). Here the situation is very similar to
the consideration of the light pressure. However, in
this case the indices i, k in the density matrix p; nu-
merate not only the states of an atom, but the states
of a photon as well. This is a rather unusual situation
and therefore we emphasize it once more. Usually in
the density-matrix description one averages over all
photon states and keeps explicit the electron degrees
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of freedom only. To spot the Schiff-theorem viola-
tion (egs. (4) and (5)) we should keep explicit the
states of an atom with one photon and average over
the states with more than one photon.

Let the laser (11) be tuned to the transition ls;,,
—2s, /5. It produces some population of the 2s, , level
which corresponds to a stationary density matrix p(©,
Say that at saturation the populations of all four states
(1812, T4, |25),5, £1) are equal. We will solve
eq. (13) starting from p(®. First of all let us take into
account the interaction with the external static elec-
tric field U= —e&-r which mixes 2s,,, and 2p,,,
levels,

U,p©@]

() — _ LU 17
plk w,k—lrik ( )
More explicitly,

pip = SSLUIL Gt as)

= i A=
sp lI-v

Here s, p denotes 2s,,, and 2p,,,, and p§;’ still is a
matrix in the projections of angular momenta.

The interaction with the photon with momentum
¢ and polarization & due to eq. (2) is of the form

H,(q,e)=H{")+H{),
H§+)=hyaq,2, H§“)+h.,+a;:e. (19)

Here a* and a are the creation and annihilation op-
erators of the photon. In the second approximation

(%) (1)
PRt = EYP—]" (20)

fo—w;+1T, '

Similarly to eq. (15) the time independent part of
p® is equal to

PR == o (LHD, p O Lk [HE),p% 1)
“ 21

Analogously to eq. (16) the correction to the energy
is of the form
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SE=Tr(Hsp®)

i
= S Trldg(Hy p @™ —p*H, )]

if dg
"E.[(2n)3d"
[hsp“)]ki "

halh*, 0 )i ik)
X;gwfwm_ w—w,+i0 /° (22)

One can verify that due to the relation @ = — wy; the
real parts of the Green functions in (22) are can-
celled out, and only dJ-functions survive:
(w—wy—10) "' > ind(w—w,). Using eq. (18) 8E can
be transformed to the form

4n d3g
OF = ?Re.l.wd-qd(w—wo)
XTr(p&’ <plhlls) (1s|h™[s)) . (23)

The trace in this formula is over the projections of
the angular momentum. Comparing with eqs. (1)~
(5) we see that expression (23) identically coin-
cides with the energy shift (5) which is derived from
the balance of momenta.

In conclusion we formulate the results of the pres-
ent work. The Schiff theorem (screening of an ex-
ternal static homogeneous electric field on the nu-
cleus of a neutral atom) is violated for the excited
(unstable ) atomic states. As a matter of principle this
violation cannot be observed in the scattering of a
photon on the ground state of an atom. In other words
there is no effect if one uses as a probe the photon
which itself prepares the unstable quantum state. The
violation takes place if the photons (laser field) are
used to prepare the unstable quantum state and the
other field probes the atom. Say using the microwave
field one can observe the dependence of nuclear
magnetic response frequency on the nucleus electric
dipole moment d. Just in this sense the Schiff theo-
rem is violated for the unstable quantum states.

 The main subject of the present paper is to point
out the Schiff theorem violation for unstable atomic
states. Besides that we would like to draw the atten-
tion of the reader to an interesting principal possi-
bility. We mean the use of the effective electric field
[12] due to the light pressure for the experimental
search for the electric dipole moment of the nucleus
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in nuclear magnetic resonance experiments. This
method is more snitable for light atoms.

We are grateful to V.F. Dmitriev, M.G. Kozlov, J.
Sucher, V.B. Telitsin, V.F. Yezhov, and especially to
V.V. Flambaum and 1.B. Khriplovich for the nu-
merous helpful discussions and stimulating questions.
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