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Over the fifty years that have passed since its foundation, the modern theory of spectral line broadening
in plasmas has made great strides in explaining countless phenomena. The theory has been in constant
development and, increasingly, the computer simulation methods have played an important and unique
role in this process. In this short Review we outline this development, describe the current status, and
discuss the future of computer simulations for plasma line broadening.

� 2009 Elsevier B.V. All rights reserved.
It is nice to know that the computer understands the problem.
But I would like to understand it, too.
E. Wigner.
1. Introduction

1.1. Outlook

The foundation of the modern theory of spectral line broadening
in plasmas, based on contributions of several scientists, had been
laid out by the 1960s [1]. For over a decade, there appeared a large
number of successful applications of the theory to various experi-
ments [2]. With a large number of applications in many areas of
plasma physics, applied to plasmas with particle density ranging
from several atoms per cubic centimeter to that of solid state and
temperature from close to absolute zero to billions kelvin, the
theory of line broadening has been in perpetual development and
remains at the heart of plasma spectroscopy [3].

The 1960s were also the years of a rapid progress in develop-
ment of computers. It was then that Moore’s law – the prediction of
exponential growth of the computational power with time – was
foreseen [4] for the next decade and, somewhat surprisingly, still
: þ972 8 934 3491.
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holds true [5]. It is only natural, then, that one clear trend in the
development and applications of line-broadening calculations is
a significant increase in the computational results, in particular,
using computer simulations [6]. Evidently, this is not specific to the
subject of line broadening, as other fields of science in general show
clear signs of intrusion of computers in what used to be a sovereign
patrimony of theoreticians (e.g., see [7]).

1.2. The ‘‘standard theory’’

We recall, see the more detailed overview [8] in this issue, that
the line shape is given by

LðuÞ ¼ 1
p

Re
ZN

0

dt expðiutÞCðtÞ; (1)

where C(t) is the autocorrelation function of the light amplitude,
which in the dipole approximation and neglecting stimulated
emission can be expressed (up to a numerical factor) as

CðtÞ ¼ Trh d
!
ð0Þ d
!
ðtÞrð0Þi: (2)

Here, d
!

is the dipole momentum of the radiator, r is the statistical
or density operator, and the trace (Tr) is taken over both the initial
and final states of the transition. The problem, thus, is reduced to (i)
finding time evolution of d

!
and (ii) averaging its autocorrelation
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function over a statistically-representative ensemble of the plasma
particles. In Eq. (2), this average is denoted by the angle brackets CD.

Evidently, the problem in its general form cannot be treated
analytically. In order to make it solvable, several fundamental
assumptions and approximations are used. First, the density oper-
ator of the perturbers rp and that of the radiator rr are assumed to
be independent. Second, it is usually assumed that the kinetic
motion of the radiator as a whole, which is responsible for the
Doppler broadening, and the evolution of its bound electron(s),
which gives rise to the Stark broadening, are not correlated, i.e., the
internal (electronic) and external (translational) degrees of
freedom of the radiator are not coupled. Thus, the total density
operator can be factorized:

r ¼ rp5rðextÞ
r 5rðintÞ

r ; (3)

where 5 denotes a tensor product. Third, the effects of the plasma
environment on the radiator are split into two parts characterized
by two radically different frequency regions: the slow ions and fast
electrons. Indeed, the typical frequency of the electric field due to
a perturber species p with a thermal velocity vp and a particle
density np is

npwvpn1=3
p ; (4)

thus, the perturbation due to electrons is (assuming equal
temperatures and plasma quasi-neutrality)

ne

ni
w

�
mi

me

�1=2

Z1=3
i (5)

times faster than that of ions with mass mi and charge Zi. This large
factor, two orders of magnitude or more, allows the averaging in Eq.
(2) to be performed in two stages, first over the electrons and then
over the ions:

h.i ¼
�
h.ielectrons

�
ions: (6)

While evaluating the inner average in Eq. (6), over electrons, the ions
are assumed to be essentially stationary, collectively producing
a slowly varying electric field Fi that results in a static shift w(Fi). The
electrons are assumed to perturb the radiator by means of ‘‘colli-
sions’’, treated in the impact approximation. These collisions cause
a change of the radiator state, thus interrupting the spontaneous
radiation, or alter the energy levels of the radiator, which results in
a phase shift. The net effect of these processes is a shifted Lorentzian
shape conveniently expressed using the impact operator f:

h.ielectrons/
1

u�wðFiÞ � ifðFiÞ
: (7)

The real and imaginary parts of f have, respectively, the meaning of
the half-width and shift of the Lorentzian.1 On the other hand, the
outer average in Eq. (6), over ions, is performed as a mere averaging
over all possible fields corresponding to the different ion configu-
rations near the perturbed atom or ion, which is called the quasi-
static approximation:

h.iions/

ZN

0

dFiWðFiÞð.Þ; (8)
1 Note that w and f are operators in the Hilbert space of the radiator.
where W(Fi) is the ion microfield distribution function.2 Finally, we
obtain

LðuÞ ¼ �1
p

Im Tr
ZN

0

dFi
WðFiÞj d

!
j2r
ðintÞ
r

u�wðFiÞ � ifðFiÞ
: (9)

The above expression, and the set of assumptions in Eqs. (3), (6)–(8)
that led to its derivation, often collectively referred to in the
contemporary line-broadening literature as the ‘‘standard theory’’
(ST). It should also be noted that in all calculations of the microfield
distribution W(F) and almost all calculations of the impact operator
f, classical motion of, respectively, the ions and the electrons is
assumed. Because of the mixture of classical treatment of the per-
turbers and the quantum approach to evolution of the radiator,
such calculations are called ‘‘semiclassical’’.
1.3. Computer simulations

Computers have been used in science since their invention. The
main use of a computer, however, was at first like that of an
arithmometer – a very powerful one, but still an instrument for
solving more or less straightforward numerical problems, like those
that in principle could be solved, albeit in a very laborious way, by
a human. The line-broadening theory is not an exception. For
example, soon after the formulation of the ST, a computer code was
developed [9] employing the ideas of the ST; other implementa-
tions (e.g., [10,11]) followed. The focus of the present review,
however, is not computer calculations in general, but a very specific
subset called ‘‘computer simulation’’ (CS) methods.

Computer simulation is the discipline of designing an abstract
model of an actual physical system, executing the model on
a computer, and analyzing the execution output. The scale of
models being simulated by computer simulations today far exceeds
anything possible (or perhaps even imaginable) using traditional
paper-and-pencil mathematical modeling. Often it is practically
impossible to trace an entire execution of CS; for this reason, the
results obtained using a CS are, in a sense, considered as results of
an experiment. In fact, there is a certain controversy as to whether
a CS approach to a given problem should be considered a theoret-
ical or experimental one [12]. Indeed, the simulation results are
used like experiments in some studies, e.g., to test theories, and, like
experimental results, are prone to problems of reproducibility and
statistical errors. On the other hand, no measurements are done on
real systems using a CS, because what is investigated in computer
simulations are models. Thus, in order to write reasonable simula-
tion code one needs to have sound ideas about the underlying
nature of the physical processes and, like in theoretical studies, to
make hard choices about including only the most relevant physical
phenomena and neglecting the rest. However, by leveraging the
computational power, it can be afforded to employ models at
a more fundamental level, i.e., one may need fewer approximations.
For example, as discussed in the next Section, the use of the CS
methods (CSMs) in line-shape calculations began with simulating
the motion of ions, thus removing the quasi-static approximation
(8), that was then followed by progressively removing most of the
other ST approximations assumed in arriving at Eq. (9).

Therefore, with properly chosen models, computer simulations
play a very important role as ‘‘ideal’’ experiments, ones that allow
us to ‘‘switch off’’ certain effects and examine others, thus
providing a unique insight into how different, but similar – at least
2 In realistic calculations of W(Fi) the ions are replaced by Debye quasiparticles,
thus, the ion-electron interactions are phenomenologically accounted for.
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– in appearance, effects interfere. For example, one can study the
correlation between the Stark and Doppler broadenings, which can
be difficult to distinguish experimentally by line-shape measure-
ments. Also, some quantities that are not directly observable in
experiments yet have a profound theoretical meaning (e.g., various
microscopic correlation functions) can only be extracted using CS.
Solving Schrödinger

   Equation (t-dep.)

Fourier Transform

   and averaging

Line-shape
calculations

Û(t) → D
→

(t)

Fig. 1. Schematic diagram of CS line-shape calculations.

4 Extension to the magnetic dipole and higher orders of the multipole expansion
2. Milestones

First attempts to incorporate ion motion into theoretical models
(i.e., eliminating the quasi-static approximation expressed by Eq.
(8)) were made in late 1960s to early 1970s [13–16]. Concomitant
with the development of these models experimental techniques
improved and there began accumulating experimental data of Stark
broadening of hydrogen and hydrogen-like transitions that showed
significant disagreements with the ‘‘mainstream’’ theoretical
calculations. Kelleher and Wiese [17] studied the shape of the
Balmer b line of hydrogen and deuterium and showed that the dip in
the center of the spectral line is significantly ‘‘shallower’’ than pre-
dicted. By varying the plasma composition, it was unambiguously
shown that the effect depends on the reduced mass of the radiator
and the perturbing ion species m¼ mrmp/(mrþ mp); furthermore, an
extrapolation of the experimental results to m¼N matched the
theoretical results fairly well. These and similar results [18] clearly
indicated that it was an effect of ion motion that was missing in the
standard theory; measurements of first members of the Lyman
series by Grutzmacher and Wende [19,20] showed further signifi-
cant disagreements.

Dubbed as ‘‘ion dynamics’’,3 the phenomenon inspired the use
of the N-body molecular-dynamic (MD) simulations in line-shape
calculations. Since the pioneering work of Stamm and Voslamber
[21], such calculations are made based on the scheme given in Fig. 1.
The calculations are split into two largely independent computa-
tional pieces. The first one is the MD simulation that models the
motion of plasma particles. Clearly, the volume of the plasma
simulated should be large enough to encompass a few Debye radii
in each dimension, thus, a typical number of the particles included
is of the order of 102�103. The fields produced at the radiators, as
a result of the essentially chaotic motion of the plasma particles
modeled, are stored as a function of time for a subsequent use in the
second computational piece. The latter piece treats these ‘‘field
histories’’ as a time-dependent perturbating potential, V(t), while
solving the Schrödinger equation for a radiating atom or ion:

iZ
d
dt

UðtÞ ¼ ½H0;UðtÞ� þ VðtÞUðtÞ; (10)

where H0 is the unperturbed Hamiltonian and U(t) is the time-
development operator, or, in the interaction representation,

iZ
d
dt

UðtÞ ¼ VðtÞUðtÞ: (11)

As a result, the time evolution of the dipole operator d
!
ðtÞ is

obtained:

d
!
ðtÞ ¼ UðtÞy d

!
ð0ÞUðtÞ; (12)
3 The term is somewhat ambiguous; indeed, for sufficiently fast ions, their effect
can adequately be described within the framework of the ST, namely, using the
impact approximation. What is meant by ‘‘ion dynamical’’ effects are, in fact,
intermediate cases when neither the quasi-static nor the impact approximation is
applicable to the Stark broadening effect of ions. Similar intermediate regimes of
electron broadening can be realized in dense and/or cold plasmas, or when
considering Rydberg transitions.
that, in turn, is further used to calculate the line-shape in the dipole
approximation (Eqs. (2) and (1)).4 The entire procedure is repeated
many times in order to average over a statistically-representative
ensemble. This directly corresponds to the averaging C D in Eq. (2).
Finally, any broadening effects not accounted for in a specific
model, e.g., Doppler broadening, are calculated at a post-processing
stage, which is not shown in Fig. 1.

From the basic properties of the Fourier transform it is evident
that the simulation time of a single run, tr, should be sufficiently
long to provide the required accuracy du for the line shapes, i.e.,
tr a 2p/du.5 The total simulation time t should be long enough to
collect representative statistics of the field histories, i.e., it should
be a few orders of magnitude larger than it takes the slowest
particles (usually ions) to cross the inter-particle distance: t[n�1

i ,
see Eq. (4). The number of runs contained in the average should be
Nr h t/tr [ du/(2pni), commonly reaching values of the order of
103 for calculations aimed at a few-percent accuracy. In practice, it
is often more efficient to let the MD simulations run for the entire
time t and then split the resulting field history into Nr parts than to
make many short runs of duration tr.

6 Thus, the statistical ensemble
should be straightforward, although no such studies, to the best of our knowledge,
have been published.

5 This is a rather challenging requirement, since the relative accuracy du/w
depends on the final line width w that is not known in advance.

6 The reason is that, especially for moderately- or strongly-coupled plasmas,
some time is required for the simulated plasma to equilibrate, i.e., to relax – both in
configuration and momentum space – from the arbitrarily assigned initial condi-
tions. Clearly, the field histories during the equilibration time are unusable for the
line-shape calculations; therefore, the time needed for equilibration can represent
a significant overhead if the MD simulations are repeated many (Nr) times.
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averaging is replaced with the time averaging, justified by the
ergodic hypothesis. We note that the resulting line shape is ‘‘noisy’’,
with the ‘‘noise’’ diminishing as the number of runs grows.
Consequently, the parameters that define a line shape, such as the
full width at half maximum (FWHM), will gradually converge to
a certain value in the course of the calculations. The convergence
process has an inherently random character, thus substantiating
the similarity between CSMs and experiments as mentioned in the
previous section. This also makes the estimation of the accuracy of
the obtained values a non-trivial task.

In spite of the common general structure shown in Fig. 1 for all
line-shape computer simulations, the details of different approaches
vary widely. First, only the motion of ions was simulated [21], while
the effect of electrons was still considered in the impact approxi-
mation; thus, the electron broadening was accounted for by
convolving the CS-modeled line shapes with a respective Lorentzian
at the post-processing stage. Furthermore, the ions were assumed
non-interacting, moving along straight-path trajectories (the
screening effects were accounted for by using, instead of the
Coulomb potential, the Debye potential when calculating the field
histories). Evidently, using straight-path trajectories is applicable to
cases of neutral radiators or, in general, when the neglect of any
correlations between the motion of perturbers and radiators is
justified. The next important development, by Stamm et al. [22], was
taking into account interactions between the ions and between the
ions and the (charged) radiators. In addition to extending the
applicability range to strongly-coupled plasmas, where evidently
the straight-path-trajectory approximation breaks down, the
inclusion of the radiators in the MD calculations allowed for
investigating ‘‘in situ’’ correlations between the Stark and the
Doppler effects. We note that this corresponds to dropping the
approximation of independent rp and rðextÞ

r in Eq. (3).
Strictly speaking, only this type of MD modeling can be called

a true N-body simulation. Here we refer to it as the full MD (FMD)
approach, and the CS using non-interacting quasiparticles as the
trivial MD (TMD) one. Since in an FMD implementation, at each time
step, forces between all pairs of the particles need to be evaluated,
the required computational resources scale as wN2, where N is the
number of particles simulated.7 This is in a striking contrast to
a TMD scheme, for which the processing time scales as N.

In the studies we have reviewed so far, the electrons were
treated in the impact approximation, i.e., outside of the MD
modeling, because of the difficulty in including the electrons in the
same framework of simulation as the ions. The reason arises from
the radically different time scales of the field variations (see Eq. (5)).
As a result, carrying out simulations of both electrons and ions is
about two orders of magnitude more expensive computationally.
This large factor is especially prohibitive in the case of FMD simu-
lations. Hence, quite expectedly, the first CS-based line-shape
calculations with both electrons and ions, performed by Gigosos
and Cardeñoso [25] and Hegerfeldt and Kesting [26], utilized
a variant of TMD.

In addition to being the first joint simulations, i.e., having both
electrons and ions, these studies included other noteworthy devel-
opments. In Ref. [25] the evolution operator was obtained based on
a special technique [27] which is very simple and advantageous for
numerical calculations. It is based on the SO(4) symmetry of
the hydrogen states (and, therefore, may only be applied to the
7 There are numerical algorithms allowing for reducing the computational
complexity of the N-body calculations from the ‘‘brute-force’’ OðN2Þ to lower
powers of N, down to OðNÞ [23]. However, these advanced algorithms become
efficient for particle numbers exceeding w104�105 [24], whereas the needs of the
line-shape modeling are usually satisfied with significantly lower N(w102�103).
hydrogen-like radiators when the fine structure, as well as the
coupling between states with different quantum numbers can be
neglected). Also worth noting is that the method allows for
a straightforward generalization [28] to account for the magnetic
field.8 The authors of Ref. [26] used a collision-time simulation
technique, avoiding re-injection of the plasma particles. During the
course of a plasma CS, at each time step part of the particles cross the
boundary of the simulation volume and have to be re-injected back
in order to preserve the particle density. The simplest approach,
using the mirror walls, is inapplicable for simulating non-interactive
(quasi)particles of TMD, since it results in periodic trajectories and,
therefore, artifacts in the calculated line shapes. Instead of using
more complex re-injection techniques, in the collision-time method
[26] the simulation volume and, hence, the number of particles, are
chosen large enough so that the loss of the particles during a time
typical for the dipole autocorrelation function has a negligible effect.
However, in order to reduce the computational time, in the calcu-
lation of the perturbation field only particles sufficiently close to the
center of the volume are accounted for.

It took another decade and a half until the joint FMD simulations
became feasible. Used first for investigating correlation effects in
many-component plasmas [30–32], these types of simulation were
soon applied to realistic line-shape calculations in the studies of
Ferri et al. [33] and Stambulchik et al. [34]. At the same time,
calculational approaches assuming a generic, non hydrogen-like
form of radiator Hamiltonian were implemented by Gigosos et al.
[35] and Stambulchik and Maron [29].
3. Current status and prospects for future studies

After three decades of development, computer simulation
methods in line-shape calculations have matured to become an
important asset in the spectroscopist’s toolbox. Evidently, there has
also been significant progress [3] in the theoretical understanding
of many complex phenomena that fall outside the basic ST
assumptions. Nevertheless, in several cases accurate and detailed
calculations are yet impossible without CSMs. As examples we note
that CSM results are widely used as plasma diagnostic tables [36],
sought as a definite arbitrator in comparing competing theories
[37,38], applied in situations when the Stark line shapes are
significantly altered by either the fine-structure effects [29] or
magnetic field [39,40], employed for studying effects of correlations
in plasma-particle motion on line shapes [33,34,41], and used for
the analysis of line-shape asymmetries [42,43]; this list is far from
being exhaustive.

An observant reader may have noticed that, in the vast majority
of the CSM studies, hydrogen or hydrogen-like radiators were
considered. One reason for this is historical: the very birth of the
line-shape CS methods was urged by observing the ion dynamical
effects on line shapes of hydrogen[-like] species. There is also
a technical reason favoring radiative transitions in hydrogen-like
radiators: these atomic systems are characterized by a near
degeneracy of the dipole-connected atomic states and, as a result,
the Stark effect is linear and the line broadening is strong. On the
other hand, radiative transitions between non-degenerate states
are characterized by quadratic Stark effect and, hence, the broad-
ening is relatively small. However, in order to obtain an accurate
line-shape one needs to run the calculations for a time well
exceeding the inverse line width: tr [ w�1. On the other hand,
the time step of the calculations should be much smaller than the
inverse typical frequency of the field variation (4) due to the
8 Contrary to an erroneous remark in [29].
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lightest perturbers, i.e., electrons: Dt � n�1
e . Therefore, for a given

plasma density and temperature, the number of time steps the
calculations should be carried over is much larger for a narrow
isolated line, and may reach hundreds of thousands or even more
per single run of which there need to be many to provide a time
average that is equivalent to the statistical average in Eq. (2).
Beyond the corresponding growth of the computational resources
required [35], this also poses problems of keeping the accumulated
numerical error, which also scales up with the number of steps,
within reasonable bounds.

There are, however, more fundamental problems. Presently, the
CSM line-shape calculations are semiclassical, that is: (i) the per-
turbers are assumed to move along classical trajectories and (ii)
there is no connection between the evolution of the internal degrees
of freedom of the radiator and that of the ‘‘bath’’ of perturbers (cf. Eq.
(3)). While justified for ions, applying these assumptions to elec-
trons is, in general, questionable. Indeed, let us consider a hypo-
thetical three-level radiator with the ground state j0D and two
excited states j1D and j2D that give rise to j1D / j0D and j2D / j0D

radiative transitions, respectively. We further assume, for simplicity,
that only the interaction between j1D and j2D is essential for the Stark
broadening of both spectral lines. When immersed in a thermal bath
with the temperature T, the populations of the excited states, i.e., the
diagonal elements of the density matrix of the radiator should
satisfy the statistical ratio Cr

ðintÞ
22 D=Cr

ðintÞ
11 D ¼ expð�DE12=kTÞ, where

DE12 is the energy separation between the two excited states, k is the
Boltzmann constant, and averaging C D is done over a sufficiently long
time to smooth out fluctuations. However, if calculated within
a CSM approach, the ratio would be exactly unity. This result can
easily be understood if one considers a physical problem corre-
sponding to the employed model in which the motion of the per-
turbers is unaffected by the internal state of the radiator. This would
be the case for very massive (literally, infinitely heavy) perturbers,
moving with the velocities of the real plasma particles – so that the
time evolution of the field they form is kept the same.9 Clearly, this
corresponds to T¼N of the particles in the bath and, thus, the
Boltzmann factor of unity.

The consequences of the failure to reproduce the correct Boltz-
mann populations are more serious than the mere fact of wrong
relative line intensities, which are trivial to correct unless there is
a significant overlap of their shapes. Indeed, from the detailed
balance principle it follows that the excitation j1D / j2D and de-
excitation j2D / j1D rates should be different, as determined by the
same exp(�DE12/kT) factor. On the other hand, these rates corre-
spond to the inelastic part of the Stark broadening [44], which
typically constitutes a major part of the total Stark width of isolated
lines (e.g., [45]). Thus, the Stark broadening calculated within the
CSM approach as it exists today is prone to uncertainties of the order
of j1� exp(�DE12/kT)j.10 Evidently, also certain non-equilibrium
effects [46] cannot be reproduced. For the errors to be small one
requires DE12/kT� 1. This is easily satisfied for degenerate systems
(as far as electrons are considered, the static Stark splitting due to
a typical ion field can be substituted for DE12), however, in the case
of isolated lines kT can be comparable to DE12 or even be smaller.

Low-temperature cases are also problematic since the exchange
term in the excitation amplitude due to a near-threshold electron
can be significant. This problem arises as pure quantum exchange
phenomenon cannot be reproduced when electrons are simulated
by a classical MD. Further difficulties arise for low-temperature
cases particularly for transitions between levels with low principal
9 Neglecting correlations in the motion of perturbers, which are unimportant in
the present context.

10 The same, evidently, can be said of semiclassical ST calculations.
quantum number when the contribution of electron collisions with
very low impact parameters, which are comparable to the dipole
matrix element of the transition, contribute significantly. Therefore,
in these cases penetrating collisions need to be accounted for [47].

To summarize: the treatment of the electron perturbers beyond
the classical picture and allowing for ‘‘back-reaction’’ from the
radiator to the perturber are needed in order to extend the appli-
cability domain of line-shape CSM calculations beyond spectral lines
of hydrogen-like radiators while preserving high accuracy. Including
the ‘‘back-reaction’’ effects implies that the principal scheme of the
CSM calculations (Fig. 1) should undergo an essential upgrade: the
MD simulations and the Schrödinger solver will no longer be inde-
pendent computational pieces but, instead, run in parallel allowing
for a bidirectional interaction between them. We note that going
beyond the fundamental approximation of independent rp and rðintÞ

r
would have benefit beyond the calculations of Stark broadening of
isolated lines. For example, correlation effects between the internal
state of the radiator and the distribution function of perturbers are
believed to contribute to the shift of hydrogen-like lines [48,49].
Finally, resonance broadening [3, Chap.4.8], which is often impor-
tant for neutral species in dense but weakly ionized plasmas, is
another candidate for modeling within this approach.

4. Conclusions

The theory of spectral line broadening has a large number of
applications in many areas of plasma physics. The theory has been in
perpetual development, resulting in deepening our understanding
of plasma physics, extending the applicability limits, discovering
new challenges, and sparking enlightening discussions. The
computer simulation methods have played an increasingly impor-
tant role in this development. Presently, line shapes of hydrogen-
like species are treated very well by the computer simulation
methods, however, the suitability to the modeling of isolated lines is
less satisfactory. Including in the calculations quantum-level inter-
actions between the radiator and perturbers is considered a future
direction in the development of the simulation methods.
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modeling in warm and dense hydrogen plasmas, High Energy Density Phys. 3
(1–2) (2007) 81–85. doi:10.1016/j.hedp.2007.02.034.

[34] E. Stambulchik, D.V. Fisher, Y. Maron, H.R. Griem, S. Alexiou, Correlation effects
and their influence on line broadening in plasmas: application to Ha, High
Energy Density Phys. 3 (2007a) 272–277. doi:10.1016/j.hedp.2007.02.021.
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M.Á. González, T del Rı́o Gaztelurrutia, J.W. Dufty, Electric micro fields in simu-
lated two component plasmas, in: M.A. Gigosos, M.Á. González (Eds.), SPECTRAL
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