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Quasi-Contiguous Approximation for
Line-Shape Modeling in Plasmas

E. Stambulchik and Y. Maron

Faculty of Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. We present an analytical method for the calculation of shapes of Stark-broadened spec-
tral lines in plasmas, applicable to hydrogen and hydrogen-like transitions (including Rydberg ones).
The method is based on the recently suggested quasi-contiguous approximation of the static Stark
line shapes [E. Stambulchik, and Y. Maron, J. Phys. B: At. Mol. Opt. Phys. 41, 095703 (2008)], while
the dynamical effects are accounted for using the frequency-fluctuation-model approach. Compar-
isons with accurate computer simulations show excellent agreement.
Keywords: Stark broadening, line shapes, quasi-contiguous approximation, frequency fluctuation
model, computer simulations.
PACS: 32.30.-r,32.60.+i

INTRODUCTION

Line shapes of hydrogen and hydrogen-like transitions (including Rydberg ones) are
important for many topics of plasma physics and astrophysics. However, rigorous Stark
broadening calculations of such lines are complex and time consuming. To overcome
the difficulties, a simple analytical method for the calculation of line broadening was
recently suggested [1], based on the quasi-contiguous (QC) approximation of the static
Stark line shapes. With further accounting for the static and dynamic properties of the
plasma micro-fields, a simple expression for the full width at half-maximum (FWHM)
of the Stark line broadening in plasma was obtained. A very good accuracy was achieved
over a range of transitions, species, and plasma parameters. Although the method is es-
pecially suitable for transitions with Δn! 1, it describes rather well even first members
of the spectroscopic series with Δn as low as 2.

In this study, the QC method is extended to analytical calculations of line shapes (not
mere line widths) in plasmas. To this end, we employ a recent formulation [2, 3] of the
frequency fluctuation model (FFM).

METHOD

The detailed description of the QC approximation is given in Ref. [1]. For convenience,
an abridged version is provided below. Furthermore, for the sake of simplicity, plasma
is assumed ideal (no correlation effects), with all particles having equal temperature T .

Let us consider a dipole radiative transition between degenerate (hydrogen-like or
Rydberg) levels with the principal quantum numbers n and n′. The line shape of the
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transition can be factorized as

Iqs(ω) = I(0)nn′Lqs(ω), (1)

where I(0)nn′ is the total line intensity and ω is assumed relative to the zero-field line
position ω0. It is convenient to re-write the area-normalized line-shape Lqs(ω) using the
reduced detuning ω̄ = ω/Δ0, where

Δ0 = αnn′F0/h̄ . (2)

Here, F0 is the Holtsmark normal field strength [4]

F0 = 2π (4/15)2/3ZpeN
2/3
p (3)

and αnn′ is the linear-Stark-effect coefficient:

αnn′ =
3
2
(n2 −n′2)

ea0
Z

. (4)

In the expressions above, h̄ is the reduced Plank constant, e is the elementary charge, a0
is the Bohr radius, Z is the core charge of the radiator (in units of e), and Zp and Np are,
respectively, the charge and the density of the perturber particles.

As shown in [1], for n−n′ ! 1 the quasistatic line shape can be accurately approxi-
mated by

Lqs(ω̄) = S(ω̄), (5)
where the S function is analytically defined as

S(ω̄) =
1
π

∫ ∞

0
cos(ω̄x)exp(−x3/2)dx . (6)

Defining its half width at half maximum (HWHM) as ω̄0
1/2 ≈ 1.44, one can write the

quasistatic FWHM as
wqs = 2ω̄0

1/2Δ0 . (7)

Accounting for the influence of the micro-field dynamics on the line width is done by
introducing a “quasistaticity” factor f , defined as

f =
R

R+R0
, (8)

where
R=

wqs
wdyn

(9)

is the ratio of the quasistatic width to the typical frequency of the micro-field fluctuations
wdyn,

wdyn =
〈v〉
〈r〉

=

√

kT
m∗

p

(

4πNp
3

)1/3
. (10)
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Here, m∗
p is the reduced mass of the perturbers. The dimensionless constant R0, deter-

mining transition from the quasistatic to dynamic regime, was inferred by comparisons
with computer simulation results and found to be 0.5.

The full dynamic Stark width is then

w= f wqs. (11)

We note that the semi-empiric treatment of dynamic effects by Eqs. (8–11) has two
important properties: (i) it gives the correct quasistatic width in the high-density/low-
temperature limit and (ii) reproduces the expected T - and Np-dependences in the low-
density/high-temperature impact limit [5],

w ∝ Np/
√
T . (12)

A recent formulation [2, 3] of the original FFM approximation [6] is an attractive
approach for very fast line-shape calculations. The dynamic line-shape is a functional of
the quasistatic profile Lqs(ω):

L(ν ;ω) =
1
π

Re

∫ Lqs(ω ′)dω ′

ν+i(ω−ω ′)

1−ν
∫ Lqs(ω ′)dω ′

ν+i(ω−ω ′)

, (13)

where
ν =C0wdyn (14)

and C0, similarly to R0 in Eq.(8), is to be determined empirically by comparisons with
computer simulation results [7].

The important features of Eq. (13) are: (i) it preserves normalization,
∫

L(ω)dω = 1;
(ii) it recovers the quasistatic limit, i.e., at ν → 0, L(ω)→ Lqs(ω); and (iii) far wings of
the line-shape remain quasistatic: L(ω)→ Lqs(ω) for |ω|! ν .

Equation (13) can be re-written as a function of the reduced detuning ω̄:

L(ν̄ ; ω̄) =
1
π

Re
J(ν̄ ; ω̄)

1− ν̄ J(ν̄ ; ω̄)
, (15)

where ν̄ = ν/Δ0 and

J(ν̄ ; ω̄)≡
∫ Lqs(ω̄ ′)dω̄ ′

ν̄+ i(ω̄− ω̄ ′)
. (16)

The integral in Eq. (16) is a convolution of two functions, Lqs(ω̄) and (ν̄ + iω̄)−1,
therefore, it can be represented as

J(ν̄ ; ω̄) = F
{

F
−1{Lqs(ω̄)}F−1{(ν̄+ iω̄)−1}} , (17)

where F and F−1 designate the direct and inverse Fourier transforms, respectively.
Noticing that for ν̄ > 0

F
−1{(ν̄+ iω̄)−1}(τ) = e−ν̄τθ(τ), (18)
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FIGURE 1. Line-shapes as given by Eq. (22) for different values of ν̄ .

where θ(τ) is the Heaviside step function (θ(τ) is zero for negative τ and unity for pos-
itive τ), we obtain an alternative expression for J(ν̄ ; ω̄) which will be more convenient
for our purposes:

J(ν̄ ; ω̄) =
∫ ∞

0
dτ e−i(ω̄−iν̄)τF−1{Lqs}(τ) . (19)

We now substitute the general quasistatic line-shape Lqs in Eq. (19) with the QC
one (5). S(ω̄) is an even function, hence, its direct and inverse Fourier transforms are the
same. Therefore, using Eq. (A.6) from [1],

J(ν̄ ; ω̄) =
∫ ∞

0
dτ exp(−τ3/2 − i(ω̄− iν̄)τ) = T3/2(ω̄− iν̄), (20)

where
Tµ(z)≡

∫ ∞

0
dξ exp(−ξ µ − izξ ) . (21)

Therefore,

L(ν̄ ; ω̄) =
1
π

Re
T3/2(ω̄− iν̄)

1− ν̄ T3/2(ω̄− iν̄)
. (22)

Plots of L(ν̄ ; ω̄) for ν̄ = 0, 1, and 10 are given in Fig. 1. Evidently, L(0; ω̄) is exactly the
quasistatic S(ω̄). For ν̄ = 1, a deviation from the quasistatic profile is noticeable, and
at ν̄ = 10, the line becomes significantly narrower. Nevertheless, sufficiently far wings
(|ω̄ |! ν̄) remain quasistatic, clearly seen in the log-log scale shown in the inset of the
figure.

Let us consider the line-shape in the collision-dominated limit, i.e., for ν̄ ! 1. The
central part of the profile (|ω̄|/ν̄ + 1) can be obtained by substituting in Eq. (22)
T3/2(ω̄− iν̄) with first two terms of its Taylor series expansion, resulting in

L(ν̄ ; ω̄),
1
π

Γ(5/2)
ν̄1/2

[

Γ(5/2)
ν̄1/2

]2
+ ω̄2

, (23)
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i.e., a Lorentzian with HWHM γ̄ = Γ(5/2)
ν̄1/2 , or, in the usual units,

γ = Γ(5/2)Δ0

(

Δ0
ν

)1/2
. (24)

Therefore,

γ ∝
N5/6

p

T 1/4 . (25)

This result is in evident contradiction to the expected Np- and T -dependence of the
impact limit of the Stark broadening (12). Thus, the FFM dynamic correction, while
providing an excellent route to fast and accurate line-shape calculations up to moderate
values of w̄dyn, fails in the w̄dyn ! 1 region.1 It should be mentioned that for practical
purposes, the region of applicability is, as a rule, absolutely adequate for ion perturbers,
however, for electrons it is not necessarily so. While it is possible (and, indeed, often
done this way) to include the electron broadening via a convolution with a Lorentzian
of an appropriate width (calculated in the impact approximation), a universal analytical
approach is evidently desired.

Here, we suggest to introduce an effective ν̃ , to be used in place of ν̄ , satisfying the
following requirements:

ν̃ →

{

ν̄ , ν̄ + 1
∝ ν̄2 , ν̄ ! 1

, (26)

with the line-shape given by

L(ν̄ ; ω̄) =
1
π

Re
T3/2(ω̄− iν̃)

1− ν̃ T3/2(ω̄− iν̃)
. (27)

Evidently, Eqs. (26) and (27) for ν̄ ! 1 give the correct impact-limit dependences:

γ ∝ Δ0

(

Δ0
ν

)

∝ Np/
√
T . (28)

An obvious choice for ν̃ is
ν̃ = ν̄+

ν̄2

ν̄0
. (29)

By comparison with the computer simulation [8] results, it was determined that ν̄0 ≈ 5
gives the best overall fit. However, varying the parameter twofold in each direction
shows a rather minor sensitivity to specific value. The results of the comparison are given
in Fig. 2, where a very good agreement is seen over the whole range of temperatures
considered. The significant improvement vs. the non-corrected calculations is evident.

1 The failure to approach the impact limit was already noted in the first FFM paper [6].
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FIGURE 2. HWHM of the Stark broadening of H Lyδ due to proton perturbers with Np = 1014 cm−3.
Debye screening is neglected. – – calculations according to Eq. (22);— calculations according to Eqs. (27)
and (29) with ν̄0 = 5, with the hashed area indicating results obtained by varying ν̄0 between 2.5 and 10;
• computer simulation results, annotated with the plasma temperature assumed.

EXAMPLES AND APPLICATIONS

As an example, given in Fig. 3a are calculation results for the shape of Lyman δ of H-
like neon in a deuterium plasma with Ne = 1021 cm−3 and kT = 1000 eV (such a plasma
may exist in mega-ampere deuterium-puff z-pinches, with neon used as a dopant). The
line shapes due to ions and electrons separately are shown by the dashed and dot-dashed
curves, respectively, while the total line shape (solid line) is obtained by convolving
these two shapes. For comparison, the line shape was also calculated using a computer
simulation method [8]2 assuming the same plasma conditions3, shown by the circle
symbols. An excellent agreement over the entire line shape is evident, including the
very far wings, where the line intensity falls by a few orders of magnitude relatively to
its peak value; this is clearly seen in the log-log scale given in the inset of the figure. We
also note that the asymptotic behavior of the far wings due to electrons is the same as
that due to (singly charged) ions, as expected.

Another example is given in Fig. 3b, where results of calculations for the deuterium
n= 9 Balmer line forNe = 5×1014 cm−3 and kT = 4eV (conditions typical for magnetic
fusion experiments) are presented. Here again, a very good (< 10%) agreement with the
computer-simulation results is demonstrated over the entire line shape.

These examples demonstrate the applicability of the new method to a broad range of
scientifically sound cases. The calculations are very fast, therefore, it becomes practical
to incorporate them, into non-LTE plasma kinetics codes (e.g., [10, 11]), compromising

2 The agreement with other calculations and, where available, with experimental data was shown to be
very good, see, e.g., [9].
3 In the derivation, we assumed an ideal plasma, therefore, in order to make the comparison justified,
straight-line trajectories of unshielded (Coulomb) particles were used in the simulations in this study.
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FIGURE 3. Comparison between analytical and computer simulation (CS) results of Stark broadening
of a) Ne X Lyδ in deuterium plasma with Ne = 1021 cm−3 and kT = 1keV; b) D Balmer n = 9 line in
deuterium plasma with Ne = 5×1014 cm−3 and kT = 4eV.

neither accuracy nor computational resources required. Furthermore, the computational
time is independent of the principal quantum numbers of the transitions involved, there-
fore, the method can be easily applied to such complex phenomena as merging of the
discrete and continuum spectra and ionization potential lowering due to plasma effects.
Such calculations are indeed planned to be used for the understanding of controlled
measurements of line shape and continuum spectra of photoionized plasmas performed
at Sandia National Laboratories (USA) [12].
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