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Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike
Stark-broadened line shapes in plasmas
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We present an analytical method for the calculation of shapes of Stark-broadened spectral lines in plasmas,
applicable to hydrogen and hydrogenlike transitions (including Rydberg ones) with �n > 1. The method is based
on the recently suggested quasicontiguous approximation of the static Stark line shapes, while the dynamical
effects are accounted for using the frequency-fluctuation-model approach. Comparisons with accurate computer
simulations show excellent agreement.
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I. INTRODUCTION

Calculations of line shapes of hydrogen and hydrogenlike
transitions (including Rydberg ones) are important for many
topics of plasma physics and astrophysics. However, rigor-
ous Stark broadening of the radiative transitions originating
from high-n levels is rather complex, making the detailed
calculations of their spectral structure very cumbersome. To
overcome the difficulties, a simple analytical method for
the calculation of line broadening was recently suggested
[1], based on the quasicontiguous (QC) approximation of
the static and quasistatic Stark line shapes. With further
accounting for the dynamic properties of the plasma mi-
crofields, a simple expression for the full width at half
maximum (FWHM) of the Stark line broadening in plasma was
obtained.

In this study, the QC method is extended to analytical
calculations of line shapes (not mere line widths) in plasmas.
To this end, we employ a recent formulation [2] of the
frequency fluctuation model (FFM). Although the new method
is especially suitable for transitions with �n � 1, it describes
rather well even first members of the spectroscopic series with
�n as low as 2.

The paper is organized as follows. First, the QC-FFM
method is developed assuming an ideal one-component plasma
(OCP). Within this model, we briefly review the QC and
FFM methods in Secs. II A and II B, respectively, followed
by their combination in Sec. II C. In Sec. III we analyze
the analytical expressions obtained, paying special attention
to the collision-dominated regime. As expected, we do not
recover the impact limit of the Stark broadening in this regime;
however, a straightforward semi-empirical modification is
found to correct this. Application of the method to nonideal
multicomponent plasmas is described in Sec. IV, with a few
examples of practical interest presented in Sec. V. Finally,
the applicability of the method is discussed in Sec. VI and
conclusions are drawn in Sec. VII.

*Evgeny.Stambulchik@weizmann.ac.il; http://plasma-
gate.weizmann.ac.il/

II. IDEAL OCP

A. QC approximation

The detailed description of the QC approximation is given
in Ref. [1]. For convenience, an abridged version is provided
below.

For a dipole radiative transition between degenerate (hydro-
genlike or Rydberg) levels with the principal quantum numbers
n and n′, n − n′ � 1, the static Stark shape caused by an
electric field F can be accurately described by a rectangular
shape (ω is relative to the zero-field line position ω0),

Inn′ (ω) =
{

I
(0)
nn′

2αnn′F/h̄
for |h̄ω| � αnn′F,

0 for |h̄ω| > αnn′F,
(1)

where I
(0)
nn′ is the total line intensity, h̄ is the reduced Plank

constant, and αnn′ is the linear-Stark-effect coefficient:

αnn′ = 3

2
(n2 − n′2)

ea0

Z
. (2)

Here, e is the elementary charge, a0 is the Bohr radius, and
Z is the core charge of the radiator (in units of e). Evidently,
the use of a single rectangular shape instead of a finite, but
potentially large number of individual components, drastically
reduces the complexity of the line-shape calculations and
analysis.

We now proceed to evaluating the line shape in the
quasistatic approximation. Convolution of Eq. (1) with a
distribution of the field magnitudes W (F ) gives

Iqs(ω) = I
(0)
nn′

∫ ∞

|h̄ω|/αnn′

W (F ) dF

2αnn′F/h̄
≡ I

(0)
nn′Lqs(ω). (3)

It is convenient to rewrite the area-normalized line shape
Lqs(ω) using the reduced field strength β = F/F0 and the
reduced detuning ω̄ = ω/�0,

Lqs(ω̄) = 1

2

∫ ∞

|ω̄|

W̄ (β)

β
dβ, (4)

where

�0 = αnn′F0

h̄
, (5)

W̄ (β) = W (F )F0, (6)
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and F0 is the Holtsmark normal field strength [3]:

F0 = 2π

(
4

15

)2/3

ZpeN
2/3
p . (7)

Here, Zp and Np are, respectively, the charge and the
density of the perturber particles. In the limit of the ideal
plasma (i.e., with omission of particle screening and other
correlation effects), the distribution function W̄ (β) becomes
the Holtsmark function H (β) [3]:

H (β) = 2

π
β

∫ ∞

0
x sin(βx) exp(−x3/2)dx (8)

(non-Holtsmark distributions are discussed in Sec. IV). In this
case, the line shape according to Eq. (4) is merely

Lqs(ω̄) = S(ω̄), (9)

where the S function is

S(ω̄) = 1

π

∫ ∞

0
cos(ω̄x) exp(−x3/2)dx. (10)

Its Fourier transform1 is

F {S(ω̄)} (τ ) = exp(− |τ |3/2) . (11)

Defining half width at half maximum (HWHM) of S(ω̄) as
ω̄0

1/2 ≈ 1.44, one can write the quasistatic full width at half
maximum (FWHM) as

wqs = 2ω̄0
1/2�0. (12)

We note that the QC approximation cannot reproduce the
central region of quasistatic line shapes, which is mainly
determined by the single central component (�n is odd) or
the dip if it is absent (�n is even). However, this region is very
narrow (∼1/n of the line width). Furthermore, even in this
region the QC line shape is correct on average, therefore,
adding a broadening of a small fraction of the line width
is sufficient to eliminate the differences at large. This is
demonstrated in Fig. 1, where relative differences between the
quasistatic line shapes of Lyman n = 9 and n = 10 transitions
and the QC one (10) are shown. It is seen that convolution with
a Lorentzian as narrow as only one fifth of the line width results
in QC line shapes that differ by only a few percent from the
exact calculations. In reality, the source of such a broadening
can be electrons or lighter ions in multicomponent plasmas
(see Sec. IV below), or other broadening mechanisms, such as
the Doppler or instrumental broadening.

Accounting for the influence of the microfield dynamics on
the line width is done by introducing a “quasistaticity” factor
f , defined as

f = R

R + R0
, (13)

where

R = wqs

wdyn
(14)

1Throughout the text, we assume the asymmetric notation with
(2π )−1 assigned to the inverse Fourier transform.
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FIG. 1. (Color online) Thin lines: relative differences between
the exact quasistatic Ly9 and Ly10 shapes and the QC one (10) (the
central component of the Ly10 line, which is a δ function in the
nonquenching quasistatic approximation, is not shown); thick lines:
same after convolution with a Lorentzian having 1/5 width of the line
FWHM.

is the ratio of the quasistatic width to the typical frequency of
the microfield fluctuations wdyn,

wdyn = 〈v〉
〈r〉 =

√
kT

m∗
p

(
4πNp

3

)1/3

. (15)

Here, Np, and m∗
p are, respectively, the density and the reduced

mass of the perturbers. The dimensionless constant R0,
determining transition from the quasistatic to dynamic regime,
was inferred by comparisons with computer simulation results
and found to be 0.5.

The full dynamic Stark width is then

w = f wqs. (16)

We note that the semi-empiric treatment of dynamic effects
by Eqs. (13)–(16) has two important properties: (i) it gives the
correct quasistatic width in the high-density/low-temperature
limit and (ii) reproduces the expected T and N dependencies
in the low-density/high-temperature impact limit [4],

w ∝ Np/
√

T . (17)

B. FFM approximation

A recent formulation [2] of the original FFM approxi-
mation [5] is an attractive approach for very fast line-shape
calculations. Departing from the quasistatic profile Lqs(ω), the
dynamic line shape is given by

L(ν; ω) = 1

π
Re

∫ Lqs(ω′)dω′

ν+i(ω−ω′)

1 − ν
∫ Lqs(ω′)dω′

ν+i(ω−ω′)

, (18)

where

ν = C0 wdyn (19)

and C0, similarly to R0 in Eq. (13), is to be determined
empirically by comparisons with computer simulation results
[6].

053108-2



QUASICONTIGUOUS FREQUENCY-FLUCTUATION MODEL . . . PHYSICAL REVIEW E 87, 053108 (2013)

The important features of Eq. (18) are (i) it preserves
normalization,

∫
L(ω)dω = 1; (ii) it recovers the quasistatic

limit, i.e., at ν → 0, L(ω) → Lqs(ω); and (iii) far wings of the
line shape remain quasistatic: L(ω) → Lqs(ω) for |ω| � ν. [In
fact, (ii) can be considered a special case of (iii)].

Equation (18) can be rewritten as a function of the reduced
detuning ω̄:

L(ν̄; ω̄) = 1

π
Re

J (ν̄; ω̄)

1 − ν̄ J (ν̄; ω̄)
, (20)

where ν̄ = ν/�0 and

J (ν̄; ω̄) ≡
∫

Lqs(ω̄′)dω̄′

ν̄ + i(ω̄ − ω̄′)
. (21)

Rewriting Eq. (20) explicitly, one obtains

L(ν̄; ω̄) = 1

π

J R − ν̄ |J |2
1 − 2ν̄J R + ν̄2 |J |2 , (22)

where J R is the real part of J (ν̄; ω̄) and its arguments were
omitted for clarity.

The integral in Eq. (21) is a convolution of two functions,
Lqs(ω̄) and (ν̄ + iω̄)−1. Using the convolution theorem, it can
be represented as

J (ν̄; ω̄) = F−1{F{Lqs(ω̄)}F{(ν̄ + iω̄)−1}}, (23)

where F and F−1 designate the direct and inverse Fourier
transforms, respectively. Noticing that for ν̄ > 0

F{(ν̄ + iω̄)−1}(τ ) = 2πeν̄τ θ (−τ ) , (24)

where θ (x) is the Heaviside step function [θ (x) is zero for
negative x and unity for positive x], we obtain an alternative
expression for J (ν̄; ω̄) which will be more convenient for our
purposes:

J (ν̄; ω̄) =
∫ ∞

0
dτ e−i(ω̄−iν̄)τF{Lqs}(−τ ). (25)

We note that in the dipole approximation, F{Lqs} is formally
identical to the autocorrelation function of the light amplitude
[4], thus, one may write

J (ν̄; ω̄) =
∫ ∞

0
dτ e−i(ω̄−iν̄)τCqs(τ ) . (26)

C. QC-FFM

We now substitute the general quasistatic line shape Lqs in
Eq. (25) with the QC one (9). Therefore, using Eq. (11),

J (ν̄; ω̄) =
∫ ∞

0
dτ exp (−τ 3/2 − i(ω̄ − iν̄)τ ) = T3/2(ω̄ − iν̄),

(27)

where

Tμ(z) ≡
∫ ∞

0
dξ exp (−ξμ − izξ ). (28)

Some properties of Tμ(z) are given in the Appendix.
Finally, Eq. (20) becomes

L(ν̄; ω̄) = 1

π
Re

T3/2(ω̄ − iν̄)

1 − ν̄ T3/2(ω̄ − iν̄)
. (29)
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FIG. 2. (Color online) Line shapes as given by Eq. (29) for
different values of ν̄.

Plots of L(ν̄; ω̄) for ν̄ = 0, 1, and 10 are given in Fig. 2.
Evidently, L(0; ω̄) is exactly the quasistatic S(ω̄). For ν̄ =

1, a deviation from the quasistatic profile is noticeable, and at
ν̄ = 10 the line becomes significantly narrower. Nevertheless,
sufficiently far wings (|ω̄| � ν̄) remain quasistatic, clearly
seen in the log-log scale shown in the inset of the figure.

III. DISCUSSION

A. Generalization to other broadening mechanisms

As shown in [2], the line shape given by Eq. (18) is
functionally equivalent to the narrowing of the Doppler
broadening (the Dicke effect [7]), obtained in the framework
of the strong collisional model [8]. One is therefore tempted
to generalize Eq. (29) to arbitrary μ’s:2

Lμ(ν̄; ω̄) = 1

π
Re

Tμ(ω̄ − iν̄)

1 − ν̄ Tμ(ω̄ − iν̄)
. (30)

Indeed, it can be straightforwardly shown, that, e.g., for μ = 2,
the above expression corresponds to the Doppler broadening.
Evidently, the scaling constant �0 used for switching from ω

and ν to ω̄ and ν̄ would be different in this case: ω0vth/
√

2c

instead of αnn′F0/h̄ defined by Eq. (5).

B. Collision-dominated limit

Let us consider the line shape in the collision-dominated
limit, i.e., for ν̄ � 1. The central part of the profile (|ω̄| /ν̄ � 1)
can be obtained by substituting in Eq. (30) Tμ(ω̄ − iν̄) with
first two terms from its expansion series (A5):

Lμ(ν̄; ω̄) � 1

π

�(μ+1)
ν̄μ−1[

�(μ+1)
ν̄μ−1

]2
+ ω̄2

, (31)

2Actually, 0 < μ � 2; see Appendix.
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i.e., a Lorentzian with HWHM γ̄μ = �(μ+1)
ν̄μ−1 , or, in the usual

units,

γμ = �(μ + 1)�0

(
�0

ν

)μ−1

. (32)

For example, for the Doppler broadening (μ = 2) this gives
2�2

0
ν

, exactly as in [8]. Another interesting case to consider is
the resonance broadening that has a Lorentzian (μ = 1) line
shape in the quasistatic approximation. According to Eq. (32),
the shape in the impact limit remains Lorentzian with the
same width γ = �0. Indeed, it is known that the collisional
line width due to resonance broadening is independent of the
velocity of perturbers [9].

We now return to the main subject of this study, i.e., the
dynamic Stark line shapes in the QC-FFM approximation. In
this case (μ = 3/2),

γ̄3/2 = �(5/2)√
ν̄

= 3
√

π

4
√

ν̄
(33)

and, therefore,

γ3/2 = 3
√

π

4
�0

√
�0

ν
∝ N

5/6
p

T 1/4
. (34)

This result is in evident contradiction to the expected Np

and, especially, T dependence of the impact limit of the Stark
broadening (17). Below, we examine whether this is a real
effect or a consequence of invalidity of an approximation (i.e.,
QC or FFM) used.

C. Comparison to computer simulations

Computer simulation (CS) methods occupy an important
and unique place in plasma line broadening calculations [10].
Among other applications, results of CS calculations can be
considered as those of gedanken experiments, allowing for
“measurements” that are either unrealistic or even entirely
impossible in real experiments. Indeed, the range of 2–3
orders of magnitude of ν̄ that is needed to either validate
or invalidate the T dependence of our approach (see Fig. 3)
corresponds to 4–6 orders of magnitude in temperature, which
is hardly possible in a real experiment, especially taking into
account that the Stark broadening should be distinguished from
contributions due to other broadening mechanisms, such as the
Doppler one.

In this study we employ the CS method described in
Ref. [11]. In the derivation, we assumed an ideal one-
component plasma; therefore, in order to make the comparison
justified, we used straight-line trajectories of unshielded
(Coulomb) particles of a single species in the simulations.
Specifically, we chose the H Lyδ (n = 5 to n′ = 1) line,
disabling interactions between levels with different n and
fine-structure effects (again, these settings correspond to the
assumptions used in Sec. II). n = 5 is high enough for the QC
approximation to be used with a sufficient (∼10%) accuracy,
while being not too high for the CS calculations to become too
resource intensive (recall that the computational time scales as
∝ (n2 + n′2)

3
[11]).

Protons of density Np = 1014 cm−3 were assumed for
perturbers, with the temperature in the range of 0.1 eV to

0.1 1 10 100

ν

0.0
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1.5

ω1/2
0

3/4√
⎯
π/ν

FIG. 3. (Color online) HWHM of L(ν̄; ω̄) as a function of ν̄ (the
solid line). ν̄ → 0 and ν̄ → ∞ asymptotes are shown by the dashed
and dot-dashed lines, respectively.

100 keV, corresponding to w̄dyn = wdyn/�0 from ≈0.14 to
≈140 (�0 ≈ 1.54 × 10−4 eV, corresponding to ≈1.24 cm−1

and ≈11.2 mÅ in the wave-number and wavelength scales,
respectively). 2000 particles were used in the simulations. The
results are given in Fig. 4.

First, confirming previous findings [1], R0 = 0.5 provides
an optimal overall fit to the CS results. Second, both the
original dynamical correction (16) and the FFM one (18)
give nearly identical results up to w̄dyn � 10, provided that
one chooses C0 = R0. However, in the collision-dominated
regime, the two approaches disagree, as was discussed above
(seen clearly in the log-log scale given in the inset of Fig. 4). In
this region, the CS results show an unambiguous convergence
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FIG. 4. (Color online) HWHM of the Stark broadening of H Lyδ

due to proton perturbers with Np = 1014 cm−3. Debye screening is
neglected. CSM: computer simulation modeling results, annotated
with the temperature assumed; QC-dyn: QC approximation with the
original dynamical correction by Eq. (16); QC-FFM: line shapes
calculated according to Eq. (29). The respective R0 and C0 empirical
constants were assumed to be 0.5 and varied twofold in both
directions, designated in the figure by hashed areas. The same data
are shown in the inset graph in the log-log scale.
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with the Eq. (16) variant, thus confirming the correct impact
limit.

Thus, the FFM dynamic correction, while providing an
excellent route to fast and accurate line-shape calculations up
to moderate values of w̄dyn, fails in the w̄dyn � 1 region.3 It
should be mentioned that, for practical purposes, the region
of applicability is, as a rule, absolutely adequate for ion
perturbers, however, for electrons it is not necessarily so. While
it is possible (and, indeed, often done this way) to include the
electron broadening via a convolution with a Lorentzian of an
appropriate width (calculated in the impact approximation), a
universal analytical approach is evidently desired.

D. Analysis and amendment

The reason that the universal expression for line shapes (30)
describes the collision-affected Doppler broadening correctly,
including the collision-dominated limit, but fails for the
Stark broadening is, we believe, that the collision-induced
fluctuation rate ν in Eq. (18) is assumed independent of the
instantaneous value of the perturbation (directly related to
the integration variable ω′ in the same expression). Such an
assumption is indeed justified for the Doppler broadening,
where the rate of collisions with other particles depends rather
weakly on the “perturbation” (the velocity of the emitter).
However, in the case of the Stark broadening, both collisions
and perturbation are due to the same mechanism (plasma
micro-fields); thus, the assumption should be questioned.

Indeed, it can be shown that in an ideal plasma with the
Holtsmark microfield distribution (8), a “mean life” time t of
a field F is the highest for fields around the most probable
value and approaches zero in the F → 0 and F → ∞ limits
as t(F ) ∝ F and t(F ) ∝ F−1/2, respectively [12]. Intuitively,
ν̄ ∼ 1/τ , therefore, fluctuation rates of very weak and very
strong fields are higher than those of average fields.

One may, therefore, introduce a field-dependent frequency
ν(β) instead of the constant one (19). It was shown [13]
that such a modification indeed allows for attaining the
proper impact limit. However, for a general ν(β) the line-
shape calculations become analytically intractable. Instead,
we attempt to semi-empirically construct an effective ν̃(ν̄), to
be used instead of ν̄:

L(ν̄; ω̄) = 1

π
Re

T3/2(ω̄ − iν̃)

1 − ν̃ T3/2(ω̄ − iν̃)
, (35)

where ν̃ should satisfy the following requirements:

ν̃ →
{
ν̄, ν̄ � 1,

∝ν̄2, ν̄ � 1.
(36)

The ν̃ ∝ ν̄2 asymptotic dependence ensures, according to
Eq. (33), the correct impact limit. An obvious choice is

ν̃ = ν̄ + ν̄2

ν̄0
, (37)

where ν̄0 can be inferred, e.g., by demanding that in the
ν̄ → ∞ limit the line width asymptotically approaches

3The failure to approach the impact limit was already noted in the
first FFM paper [5].
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FIG. 5. (Color online) HWHM of the Stark broadening of H Lyδ

under the same conditions as in Fig. 4. QC-FFM: line shapes
calculated by Eq. (29); QC-FFM, corrected: line shapes calculated
by Eqs. (35) and (37). The solid line corresponds to ν̄0 = 5, while
the hashed area around it indicates results obtained by varying ν̄0

between 2.5 and 10.

Eq. (16), resulting in

ν̄∞
0 = 64(ω̄0

1/2)
4

9π
≈ 10. (38)

By comparison with the CS results, it was determined that
ν̄0 ≈ 5 gives the best overall fit, except for the highest
(100 keV) temperature where ν̄0 ≈ 8 appears to be best.
However, varying the parameter twofold in each direction
shows a rather minor sensitivity to specific value. The results
of the comparison are given in Fig. 5, where a very good
agreement is seen over the whole range of temperatures
considered. The significant improvement vs the noncorrected
calculations is evident.

The line shapes, calculated using Eqs. (35) and (37)
(with ν̄0 = 5) are given in Fig. 6, together with respective
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FIG. 6. (Color online) Line shapes of Stark-broadened H Lyδ line
under the same conditions as in Fig. 4. Solid lines: CS results. Dashed
lines: analytical calculations with ν̄0 = 5. Dot-dashed line: analytical
calculation of the T = 100 keV case with ν̄0 = 8.
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CS-calculated profiles. Line shapes at T = 0.1 eV and 1 eV
almost coincide with that at T = 10 eV, and therefore, are not
shown for the sake of clarity.

It is seen that the universal analytical approach developed
in the present study produces very good fits (typically within
10%) to the calculated line shapes over many orders of mag-
nitude of temperature, with each one successfully describing
entire profiles from the core of the line to very far (a few
orders of magnitude of the respective HWHM) wings where
the line intensity falls to several orders of magnitude relatively
to its peak value. With the highest temperature assumed (T =
100 keV) the fit is less satisfactory (about 30% deviation).
In this case, ν̄0 = 8 produces an excellent fit, also shown in
the figure. This may indicate that ν̄∞

0 ≈ 10 from Eq. (38) is
indeed the correct limit and one should look for ν̃ in a more
complex form than the simplest one assumed by Eq. (37).
However, for practical purposes it suffices. Indeed, the field
fluctuation rate due to protons at T = 100 keV corresponds to
that due to electrons at Te ≈ 100 eV, significantly exceeding
the temperature at which neutral H atoms would be fully
ionized.

IV. REALISTIC PLASMAS

Up to now, we have assumed one-component ideal plasmas
as the source of line broadening. In realistic calculations, these
conditions are rarely met.

Accounting for more than one type of perturbers, in
particular, for both ions and electrons, can be implemented
by convolving line shapes imposed by each species separately,
i.e.,

Ltot(ω) = Li(ν̃i; ω) ∗ Le(ν̃e; ω), (39)

where “∗” denotes convolution, and properly corrected (37)
ν̃s for each species s is calculated using its charge, particle
density, and temperature. Evidently, such an approach assumes
that the effects of ions and electrons are independent. Although
not rigorous, the approximation of independent electron and
ion contributions to the line broadening proved to work very
well in numerous calculations [4], due to the very different
typical time scales of the respective (electronic and ionic)
fields [14]. Our calculations, presented in the next section,
also confirm the accuracy of this approximation. Note that
in Eq. (39) we reverted from reduced ω̄ to ω, since �0 (5)
is, in general, different for each species. Generalization of
Eq. (39) for plasmas composed of several ionic species is
straightforward.

Correlation effects in plasma result in microfield distri-
bution functions that deviate from the Holtsmark one (8).
Although such distributions lack a simple analytical repre-
sentation, fast and accurate methods for numerical evaluation
of W (β) are readily available [15]. Given that, it is possible
to generalize the present approach for non-ideal plasmas. We
first consider a situation when W (β) is provided numerically,
e.g., by the APEX method [16] or resulting from computer
simulations. Let us return to Eq. (4) where no ideal-plasma
assumption was made; its Fourier transform can be written as

F{Lqs(ω̄)}(τ ) ≡Cqs(τ ) = − Im τ−1F{β−1W̄ (β)}(τ ). (40)
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FIG. 7. (Color online) Comparison between analytical and com-
puter simulation (CS) results of Stark broadening of (a) Ne X Lyδ

in deuterium plasma with Ne = 1021 cm−3 and kT = 1 keV; (b) D
Balmer n = 9 line in deuterium plasma with Ne = 5 × 1014 cm−3

and kT = 4 eV.

Evidently, W (β) and, hence, C(τ ) depend parametrically
on charges, densities, and temperatures of plasma species.
Together with Eqs. (26) and (22), this gives the line-shape
contribution due to a given species.

Equation (40) is suitable if W (β) is given numerically.
However, in many theoretical models (e.g., [17,18]) W (β)
is represented in a form analogous to that of the Holtsmark
distribution (8), namely

W (β) = 2

π
β

∫ ∞

0
x sin(βx) exp[−f (x)]dx (41)

[again, f (x) depends on plasma parameters; for plasmas
approaching ideality, f (x) → x3/2]. In such a case, a shorter
route is available:

J (ν̄; ω̄) =
∫ ∞

0
dτ exp [−f (τ ) − i(ω̄ − iν̄)τ ] . (42)

In both cases, one should use ν̃ in place of ν̄ (37) in the
right-hand side of Eq. (20) or (22).

V. EXAMPLES

As an example, given in Fig. 7(a) are calculation results for
the shape of Lyman δ of H-like neon in a deuterium plasma
with Ne = 1021 cm−3 and kT = 1000 eV (such a plasma may
exist in mega-ampere deuterium-puff z-pinches, with neon
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used as a dopant). The line shapes due to ions and electrons
separately are shown by the dashed and dot-dashed curves,
respectively, while the total line shape (solid line) is obtained
by convolving these two shapes. For comparison, the line shape
was also calculated using a computer simulation method [11]4

assuming the same plasma conditions, shown by the circle
symbols. An excellent agreement over the entire line shape is
evident, including the very far wings, where the line intensity
falls by a few orders of magnitude relatively to its peak value;
this is clearly seen in the log-log scale given in the inset of
the figure. We also note that the asymptotic behavior of the
far wings due to electrons is the same as that due to (singly
charged) ions, as expected.

Another example is given in Fig. 7(b), where results
of calculations for the deuterium n = 9 Balmer line for
Ne = 5 × 1014 cm−3 and kT = 4 eV (conditions typical for
magnetic fusion experiments) are presented. Here again, an
excellent agreement with the computer-simulation results is
demonstrated over the entire line shape.

These examples demonstrate the applicability of the new
method to a broad range of scientifically sound cases. The
calculations are very fast, therefore it becomes practical to
incorporate them into non-LTE plasma kinetics codes (e.g.,
[19–21]), compromising neither accuracy nor computational
resources required. Furthermore, the computational time is in-
dependent of the principal quantum numbers of the transitions
involved; therefore, the method can be easily applied to such
complex phenomena as merging of the discrete and continuous
spectra and ionization potential lowering due to plasma effects.

VI. APPLICABILITY

The present method is based on the QC approximation for
the line shapes and, therefore, inherits the limitations of the
parent method, discussed in the original study [1]. In particular,
the QC approximation was derived assuming hydrogenlike
transitions with �n � 1. Nevertheless, it also describes rather
well line shapes of transitions with �n as low as 2. An example
of such a transition is given in Fig. 8. Although the shape of
the central region of the Balmer β line shape differs from
that of the accurate calculations (evidently, the dip cannot be
reproduced within the QC approximation), the widths agree
within ≈10%, as do the intensities of the far line wings. We
note, however, that for lines with �n = 1, such as Lyman α or
Balmer α, where the inaccuracy may be very significant, the
method is inapplicable.

The validity of the dipole approximation is justified for
electric fields that are weak enough for the higher-order-
multipole corrections to remain small. Therefore, we require
that the change of the plasma electric field is small on the
spatial scale of the radiator size, i.e., for each perturber
species p,

n2

Z
a0N

1/3
p � 1. (43)

4The agreement with other calculations and, where available, with
experimental data was shown to be very good; see, e.g., [22].
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FIG. 8. (Color online) Comparison between analytical and com-
puter simulation (CS) results of the Stark broadening of H Balmer β

line in ideal deuterium plasma with Ne = 1015 cm−3 and kT = 1 eV.

The neglect of the quenching interactions (i.e., those involving
levels with different principal quantum numbers), resulting in
deviations from the linear Stark effect, can be justified when
the linear Stark effect of a given level is significantly smaller
than the distance to the next neighboring level, i.e.,

ω̄0
1/2αnF0 � Z2e2

2a0

[
1

n2
− 1

(n + 1)2

]
≈ Z2e2

a0n3
. (44)

VII. CONCLUSIONS

By combining the QC approximation of the static Stark
line shapes [1] and the FFM approach [2] for accounting
for the dynamic effects, we derived an efficient and accurate
method for calculating shapes of hydrogen and hydrogenlike
transitions (including Rydberg ones) in plasmas. A semi-
empiric amendment to FFM in the high-frequency domain was
made, resulting in the correct impact-approximation limit and,
thus, allowing for direct application of the method to both ion
and electron perturbations alike. Comparisons with computer
simulations showed excellent agreement.
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APPENDIX: SOME PROPERTIES OF Tμ(z)

Definition:

Tμ(z) ≡
∫ ∞

0
dξ exp (−ξμ − izξ ). (A1)

The real part of Tμ of a real argument is, up to the factor of
π , an unskewed, unshifted, and normalized stable distribution
(defined for 0 < μ � 2; for μ � 0 the integral diverges while
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for μ > 2 the function is not positive for arbitrary x):

1

π
Re Tμ(x) = 1

2π

∫ ∞

−∞
dξ exp (− |ξ |μ − ixξ ). (A2)

In particular, μ = 1 gives the Cauchy distribution
(Lorentzian):

1

π
Re T1(x) = 1

π

1

1 + x2
, (A3)

while μ = 2 corresponds to the normal distribution (Gaus-
sian):

1

π
Re T2(x) = 1√

4π
e−x2/4. (A4)

Evidently, μ = 3/2 gives S(x) from Eq. (10), which is called
the Holtsmark distribution in mathematical statistics and is
often designated by H (x), not to be confused with the

Holtsmark field distribution (8) used in plasma physics and
astronomy.

Expanding exp (−ξμ) in Eq. (A1) into a Taylor series, we
obtain, provided Im z < 0:

Tμ(z) =
∫ ∞

0
dξ e−izξ

∞∑
n=0

(−ξμ)n

n!

=
∞∑

n=0

(−1)n

n!

∫ ∞

0
dξ ξμne−izξ

=
∞∑

n=0

(−1)n�(μn + 1)

n!

1

(iz)μn+1

= 1

iz
− �(μ + 1)

(iz)μ+1
+ · · · , (A5)

where �(z) is the gamma function.
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