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Spectral line broadening by plasmas can be computed by solving the equation of motion for the dipole of
the radiating system perturbed by a fluctuating potential obtained from computer simulations. Such calculations
have relied on the multipole expansion of the radiator-plasma interaction often keeping only the dipole term.
With increasing density, however, higher multipoles as well as plasma perturbers overlapping the bound electron
wave functions are expected to become important. For hydrogenic systems, the atomic matrix elements of the full
Coulomb and screened Coulomb interactions are given by analytical formulas. Using these results, a computer
simulation approach that accounts for the full radiator-plasma interaction is developed. One benefit is the removal
of inherent strong collision divergences in the multipole expansion approximation. Furthermore, it yields the
plasma polarization shift produced by perturbers penetrating the wave function of the radiator bound electrons.
The model was applied to hydrogenic argon Ly-α, Ly-β, and Ly-γ spectral lines in a dense argon plasma at free
electron densities of 1024 or 1025 cm−3 and temperature of 800 eV relevant to plasma diagnostic techniques for
inertial confinement fusion implosions.
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I. INTRODUCTION

Computer simulations of spectral line broadening by plas-
mas have been performed for several decades [1–4]. Since the
dipole interaction often dominates line broadening in plasmas
[5], an essential ingredient for such calculations is time se-
quences of the fluctuating plasma electric field generated with
molecular dynamics simulations. Given a field history, the
Heisenberg equation of motion provides the time-dependent
dipole of the radiating system used to compute the light am-
plitude correlation function.

In computer simulations for spectral line broadening the
plasma perturbers move in classical trajectories. This semi-
classical approach neglects quantum effects. For example,
detailed balance is not satisfied for inelastic collisional exci-
tation and deexcitation rates between atomic levels. This error
is mitigated for plasma temperatures much larger than the
energy level differences [3]. Nevertheless, even for degenerate
systems detailed balance can impact line shift calculations [6].
Also neglected is exchange between perturbing and atomic
electrons, which would tend to weaken the interaction be-
tween the plasma and the atomic system (henceforth the
radiator) emitting or absorbing a photon.

Computer simulations of spectral line broadening have
also assumed that on average the perturbers do not approach
within the spatial radiator size. Hence, the radiator-perturber
interaction is approximated by a multipole expansion typically
retaining only the dipole interaction and in some cases the
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quadrupole term [7,8]. This approximation was tested for
electron collisions with highly charged ions in laser implo-
sion experiments using full Coulomb radiator-perturber in
perturbation theory [9]. The fortuitous overestimate of the
dipole term simulating the full interaction occurred only at
the lower densities and significant discrepancies were reported
for denser plasmas. More recently the effect of penetrating
collisions (perturbers significantly overlapping with bound
electron wave functions) was considered for a large range of
plasma densities in perturbation theory [10,11] and nonpertur-
bative treatment [12] of electron impact broadening. Although
the semiclassical and quantum mechanical treatments mod-
erately disagree, both show significant differences with the
dipole term in the multipole expansion at higher plasma den-
sities. Finally, even though hydrogen spectral lines have been
extensively studied, the subject is not closed. Unresolved in-
consistencies have been reported in the Balmer series [13]. A
possible issue is the assumed dipole only approximation for
the radiator-plasma interaction [14,15].

Thus, extending the computer simulation approach by
removing the multipole expansion approximation has been
considered a priority development [16]. This is the goal
of the present work. For nonrelativistic hydrogenic radia-
tors the necessary matrix elements of the radiator-plasma
interaction are analytic. Benefits of the full interaction are
the removal of inherent strong collision divergences in mul-
tipole expansions and accounting for the monopole term
[17] natively. A drawback is increased computational de-
mands. Also discussed are similar formulations for the Debye
screened radiator-perturber interaction often used to acceler-
ate computer simulations by neglecting the mutual interaction
between plasma particles.
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The method is demonstrated for hydrogenic argon Ly-α,
-β, and -γ spectral lines used to diagnose laser driven hot,
dense plasmas relevant to inertial confinement experiments.
Comparisons are made to calculations with a second-order
perturbation treatment of the full-Coulomb interaction [9].

II. LINE SHAPE FUNCTION

The line shape function for a radiator emitting or absorbing
a photon of energy h̄ω is given by [5]

I (ω) = π−1 Re
∫ ∞

0
dteiωt 〈C(t )〉. (1)

For dipole-allowed radiative transitions the correlation func-
tion of the light amplitude is

C(t ) = Tr[ρ �d (0) · �d (t )], (2)

where �d and ρ are the dipole and density matrix for the
radiator internal states, respectively, Tr denotes a trace over
those states, and the brackets 〈 〉 represent a statistical plasma
average.

The line shape function here assumes independent Stark
and Doppler broadening. Thus, it refers only to Stark broad-
ening, and the operators are independent of the radiator
center-of-mass variables. It is then convenient to place the
origin of the coordinate system at the radiator nucleus. That is,
the radiator is assumed to move at a constant velocity during
the radiation process providing an inertial reference frame
leading to the reduced mass model [18]. This approximation
is convenient but not essential to computer simulations [19].

The time evolution of the radiator dipole operator is de-
scribed by the Heisenberg equation

−ih̄
∂

∂t
�d (t ) = [H (t ), �d (t )] (3)

with [· · · , · · · ] a commutator and the time-dependent Hamil-
tonian

H (t ) = H0 + VI (t ), (4)

where H0 is the Hamiltonian for the unperturbed radiator
and VI (t ) is the time-dependent interaction produced by the
perturbing plasma. Computer simulations provide the time-
dependent interaction, and the resulting correlation function
is averaged over time sequences [1].

The equation of motion represents a system of simultane-
ous equations for the matrix elements of the dipole operator. It
is readily shown [20] that the matrix elements of the multipole
expansion approximation for the radiator-plasma interaction
can be expressed in terms of reduced matrix elements for
electric multipole radiative transitions available from atomic
packages [21,22]. Here analytical expressions are obtained
for the full Coulomb and screened Coulomb interaction of
nonrelativistic hydrogenic radiators.

III. COULOMB INTERACTION

The radiator-plasma interaction for a one-electron radiator
is given by

VRP =
∑

p

Zp

(
ZN

rp
− 1

|�ra − �rp|
)

, (5)

where the sum is over all plasma particles, ZN is the radiator
nuclear charge, �ra is the position of the bound electron, and
�rp is the position of the pth perturber with electric charge Zp.
Atomic units are used henceforth with energy in hartree and
length in Bohr radius.

The interaction can be separated as VRP = Vnet + VI , where
the first term represents the plasma interacting with the net
radiator point charge located at the origin,

Vnet = (ZN − 1)
∑

p

Zp

rp
. (6)

The second term is the interaction of the plasma with the
radiator internal states

VI =
∑

p

Zpu(�ra, �rp) (7)

with

u(�ra, �r) = 1

r
− 1

|�ra − �r|

=
∑
	m

4π

2	 + 1

(
δ	0

r
− r	

<

r	+1
>

)
Y ∗

	m(r̂)Y	m(r̂a), (8)

where r< (r>) is the smaller (larger) of ra = |�ra| and rp = |�rp|,
Y	m(x̂) is a spherical harmonic with x̂ a unit vector in the di-
rection of �x, and the superscript ∗ denotes complex conjugate.
The potential Vnet is typically grouped with the Hamiltonian
for the plasma since it is independent of the radiator internal
states. Thus, it commutes with the radiator dipole and does not
explicitly appear in the dipole equation of motion in Eq. (3).
For charged radiators, however, it does affect the relative
motion of the perturbers about the radiator.

A. Multipole expansion

The multipole expansion always assumes r > ra and the
matrix elements simplify to

〈α|VI |β〉 −−→
r>ra

(−1)Jα−Mα

∑
	�1

∑
m

(
Jα 	 Jβ

−Mα m Mβ

)
q(	)

αβ�∗
	m

(9)
that factors into separate radiator and plasma contributions
with J and M the total and magnetic quantum numbers of the
internal radiator state, respectively. Note that the 	 = 0 term is
absent in the multipole expansion approximation since the net
radiator charge is treated through Vnet. The plasma-dependent
factor is given by

�∗
	m = −

√
4π

2	 + 1

∑
p

Zp

r	+1
p

Y ∗
	m(r̂p) (10)

and conforms with usual electrodynamics convention (e.g.,
electric field lines flow away from positive charges). Note that

�∗
	,−m = (−1)m�	m. (11)

Therefore, there are 2	 + 1 independent real quantities for
each multipole: 	 complex numbers for the m > 0 terms plus
one real number for the m = 0 term. For example, the three
components of the plasma electric field, five elements of the
symmetric traceless �∇ �F tensor (the total plasma electric field
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�F at the origin satisfies the Laplace equation), and so on for
higher multipoles.

The radiator moments are independent of plasma variables
and given in terms of atomic reduced matrix elements of the
Wigner-Eckart theorem [21],

q(	)
αβ =

√
4π

2	 + 1
〈�αJα‖r	

aY	m(r̂a)‖�βJβ〉

= A(	)
αβR(	)

αβ (12)

with � the remaining quantum numbers to identify the internal
radiator state |�JM〉. The angular integration results are in
A(	)

αβ and the radial integrals are given by

R(	)
αβ =

∫ ∞

0
draPα (ra)r	

aPβ (ra) (13)

with Pα (r) the reduced radial wave function for radiator inter-
nal state |α〉. The reduced matrix elements in Eq. (12) are the
same as those for electric multipole radiative transitions [21].
For hydrogenic radiators, the angular contribution is given in
Appendix A, and the radial integrals yield analytical results
provided in Appendix B for cases used in the present work.

B. Full Coulomb interaction

In contrast to the multipole expansion approximation, the
full Coulomb radiator-plasma interaction includes penetration
of the radiator by a plasma perturber. In this case, the ma-
trix elements no longer factor into independent radiator and
plasma contributions,

〈α|VI |β〉 = (−1)Jα−Mα

∑
	m

(
Jα 	 Jβ

−Mα m Mβ

)
A(	)

αβ∗
αβ;	m,

(14)
where

∗
αβ;	m =

∑
p

ZpU
(	)
αβ (rp)

√
4π

2	 + 1
Y ∗

	m(r̂p) (15)

also satisfying a relation like Eq. (11). For the reduced matrix
elements (see Appendix A)√

4π

2	 + 1
〈�αJα‖

(
δ	0

r
− r	

<

r	+1
>

)
Y	m(r̂a)‖�βJβ〉 = A(	)

αβU (	)
αβ (r)

(16)

with radial matrix elements

U (	)
αβ (r) =

∫ ∞

0
draPα (ra)

(
δ	0

r
− r	

<

r	+1
>

)
Pβ (ra). (17)

Contrary to the long-ranged multipole expansion with radiator
moments q(	)

αβ , the radiator radial matrix elements U (	)
αβ (r) de-

pend on the perturber radial positions. For hydrogenic systems
the matrix elements have analytical results [23], and examples
are given in Appendix B.

It is possible to rewrite Eq. (17) for 	 � 1 as

U (	)
αβ (r) = − R(	)

αβ

r	+1

[
1 − e−(na+nb)ZN r/(nanb) p(	)

αβ (r)
]
, (18)

where p(	)
αβ (r) is a polynomial in r. The first term represents

the long-ranged contribution of the 	 multipole. The second
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FIG. 1. Plots of the radial integrals U (	)
αβ (r) and their multipole

equivalents −R(	)
αβ/r	+1(r) for the n = 2 levels in hydrogen. The

divergent 1/r term subtracted from the 	 = 0 integrals. Axes labeled
in the atomic units.

term accounts for penetrating collisions, which vanish expo-
nentially with the perturber radial position. This suggests that
the sum over perturbers in Eq. (15) can be separated into near
and far perturbers. That is, only the long-ranged multipoles
are needed for perturbers far from the radiator.

C. Strong collisions for � � 1

As shown previously for 	 � 1 [9–11,24], the radiator-
plasma interaction is softened by penetrating collisions rela-
tive to the multipole expansion approximation. The monopole
term, however, requires special attention and is discussed in
Sec. III D.

The radial matrix elements for 	 � 1 are given by

U (	�1)
αβ (r) = − 1

r	+1

∫ r

0
draPα (ra)r	

aPβ (ra)

− r	

∫ ∞

r

dra

r	+1
a

Pα (ra)Pβ (ra) (19)

and, therefore, ∝ r	 for r → 0 except for special cases when
the second integral vanishes [25]. Using Pμ(x → 0) ∝ x	μ+1

[26] and the triangle inequality |	α − 	β | � 	 � 	α + 	β [im-
posed by the 3 j symbol in Eq. (A2)],

U (	�1)
αβ (r → 0) ∝

{
r	α+	β+2, nα = nβ, 	 = |	α − 	β |
r	, otherwise

(20)

and vanish with decreasing radial distance. Consequently, the
full Coulomb interaction eliminates divergences from strong
collisions for 	 � 1 in the long-ranged multipole expansions.
Plots of the radial integrals for n = 2 of hydrogen are pre-
sented in Fig. 1. The figure shows the multipole expansion in
agreement with the full Coulomb results at larger distances
but diverging at small radii. It also shows the full Coulomb
interaction softening the multipole expansion approximation
avoiding the divergence at small radii. Note that the radial
matrix elements from 	 = 1 and 	 = 2 are comparable in mag-
nitude except the latter decays faster with radial separation.
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D. Strong collisions for monopole

The 	 = 0 matrix elements of VI are diagonal in orbital
angular momentum (see Appendix A) and for hydrogenic
radiators can differ only in principal quantum number. Thus,
Eq. (17) yields

U (0)
nα	α,nβ	β

(r → 0)

= δnαnβ

(
1

r
− ZN

n2
α

)
− (

1 − δnαnβ

)

×
∫ ∞

0

dra

ra
Pnα	α

(ra)Pnβ	α
(ra) + O(r2	α+2) (21)

and the diagonal matrix elements diverge at the origin; a
consequence of the 1/r term in Eq. (8).

To proceed, consider the coupled equations of motion in
matrix notation,

−i
∂

∂t
�dαβ = 〈α|[H0, �d]|β〉

+
∑

μ

(〈α|VI |μ〉 �dμβ − �dαμ〈μ|VI |β〉). (22)

When a perturber is very close to the radiator nucleus at radial
position rNN with charge ZNN , the interaction is dominated by
the divergent term in Eq. (21). Thus, Eq. (22) can be written
as

−i
∂

∂t
�dαβ = 〈α|[H0 + V ′

I , �d]|β〉

+ ZNN

∑
μ

(〈α|r−1
NN |μ〉 �dμβ − �dαμ〈μ|r−1

NN |β〉)

= 〈α|[H0 + V ′
I , �d]|β〉 (23)

using the orthogonality condition 〈α|β〉 = δαβ with V ′
I the

remaining contributions to the interaction. Thus, the divergent
terms from close collisions cancel in the time development
of the radiator dipole. Note that the no-lower-state broaden-
ing approximation common in many calculations cannot be
applied to the monopole term in the full Coulomb radiator-
perturber interaction and avoid the divergence in Eq. (21).
Although the discussion about divergences was applied to the
equation of motion for dipole allowed transitions in Eq. (2),
the cancellation of the divergence is general and applies to
any transition.

IV. SCREENED COULOMB INTERACTION

In trivial molecular dynamics (TMD) simulations, the
mutual interaction between plasma particles is neglected sig-
nificantly accelerating the computer simulations [27]. To
mimic plasma effects, a Debye screened radiator-perturber
interaction is introduced. Thus,

VRP → V s
RP =

∑
σ

Zσ

∑
p∈σ

(
ZN e−κσ r

rp
− e−κσ |�ra−�rp|

|�ra − �rp|
)

. (24)

This expression accounts for different inverse screening De-
bye lengths κσ for different plasma species σ with charge Zσ .

A. Partial wave expansion

The separation of the interaction has V s
RP = V s

net + V s
I

where

V s
net = (ZN − 1)

∑
σ

Zσ

∑
p∈σ

e−κσ r

rp
(25)

and

V s
I =

∑
σ

∑
p∈σ

Zpu(�ra, �rp; κσ ) (26)

with

u(�ra, �r; κ ) = e−κr

r
− e−κ|�ra−�r|

|�ra − �r|

=
∑
	m

[
δ	0

e−κr

r
− 4π√

rar
I	+ 1

2
(κr<)

× K	+ 1
2
(κr>)Y ∗

	m(r̂)Y	m(r̂a)

]
. (27)

Here I and K are modified Bessel functions of the first and
third kind [26]. It is emphasized that the partial wave ex-
pansion is exact and contrary to previous work [7,8,28,29]
that assumed κra  1 does not neglect radiator size effects
[20,30].

The full screened Coulomb radiator-plasma interaction in-
cludes penetration of the radiator by a plasma perturber, and
as in the unscreened case, the matrix elements do not factor
into independent radiator and plasma contributions,

〈α|V s
I |β〉 = (−1)Jα−Mα

∑
	m

(
Jα 	 Jβ

−Mα m Mβ

)
A(	)

αβs∗
αβ;	m,

(28)
where

s∗
αβ;	m =

∑
σ

Zσ

∑
p∈σ

U (	)
αβ (rp; κσ )

√
4π

2	 + 1
Y ∗

	m(r̂p), (29)

which also satisfy a relation like Eq. (11). The radial matrix
elements are defined by

U (	)
αβ (r; κ ) = δαβδ	0

e−κr

r
− 2	 + 1√

r

∫ ∞

0

dra√
ra

× Pα (ra)I	+ 1
2
(κr<)K	+ 1

2
(κr>)Pβ (ra). (30)

Using expansions for the modified Bessel functions [26], it is
readily shown that

U (	)
αβ (r; κ → 0) = U (	)

αβ (r), (31)

reproducing the Coulomb interaction result. The integrals in
Eq. (30) converge for κ � 0 and for nonrelativistic hydrogenic
systems yield analytic results. The results, however, are more
complicated than for the Coulomb interaction in Sec. III.

B. Separation of multipole expansion

For expediency in trivial computer simulations following
the discussion after Eq. (18), the long-ranged multipole con-
tribution is explicitly separated,

U (	)
αβ (r; κ ) = R(	)

αβ (κ )G	(r; κ ) + B(	)
αβ (r; κ ), (32)
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valid for 	 � 0. The κ-dependent radiator radial moments are
given by

R(	)
αβ (κ ) = − δαβδ	0 + (2	 + 1)!!

κ	

×
∫ ∞

0
draPα (ra)

√
π

2κra
I	+ 1

2
(κra)Pβ (ra) (33)

and plasma fields

G	(r; κ ) = − κ	+1

(2	 − 1)!!

√
2

πκr
K	+ 1

2
(κr), (34)

where (−1)!! = 1. These definitions are chosen so that the no
screening limit, obtained by expanding the Bessel functions to
lowest nonvanishing order, yields

R(	)
αβ (κ → 0) =

{
κ2

6 R(2)
αβ + O(κ4), 	 = 0

R(	)
αβ + O(κ2), 	 � 1

(35)

and

G	(r; κ → 0) = − 1

r	+1
, (36)

reproducing the Coulomb results. As discussed in [30], the
	 = 0 term does not vanish in the long-ranged multipole
expansion of the screened Coulomb radiator-perturber inter-
action due to the radiator finite size and the cloud associated
with the screening of each plasma particle.

The short-ranged contributions are defined by

B(	)
αβ (r; κ ) = (2	 + 1)

∫ ∞

r

dra√
rar

Pα (ra)Pβ (ra)

× [
I	+ 1

2
(κra)K	+ 1

2
(κr) − I	+ 1

2
(κr)K	+ 1

2
(κra)

]
.

(37)

Note that the separation in Eq. (32) requires

κ < ZN
nα + nβ

nαnβ

(38)

to avoid divergences. This constrain is satisfied except for ex-
treme plasma conditions when the screening length is smaller
than the atomic state effective size. For nonrelativistic hydro-
genic systems the radial integrals yield analytic results, and
examples are provided in Appendix C.

C. Weak collisions

The contributions from penetrating collisions in Eq. (37)
decay exponentially with the perturber distance to the radiator
nucleus (see Appendix D),

B(	)
αβ (r; κ ) ∝ e−(nα+nβ )r/(nαnβ ). (39)

Consequently, for distant perturbers it is possible to neglect
B(	)

αβ (r; κ ) and only retain the multipole expansion term in
Eq. (32),

M (	)
αβ (r; κ ) = R(	)

αβ (κ )G	(r; κ ). (40)

In the Coulomb interaction limit, the expression reduces to

M (	)
αβ (r; κ = 0) = − R(	)

αβ

r	+1
, 	 � 1, (41)

and the sum over partial waves 	 converges rapidly for suffi-
ciently large radii.

For the screened Coulomb interaction, the large radii limit
of Eq. (40) is given by

M (	)
αβ (r → ∞; κ ) = e−κr

r

[
δ	0 − (2	 + 1)

∫ ∞

0
dra

× Pα (ra)
√

π

2κra
I	+ 1

2
(κra)Pβ (ra)

]
, (42)

and the partial waves do not display the r−(	+1) behavior in the
pure Coulomb case. Typically, the plasma conditions are such
that the effective radiator size is much smaller than the plasma
screening length and expanding the Bessel function leads to a
power series,∑

	=0

M (	)
αβ (r → ∞; κ )

−−−→
κra1

e−κr

r

∞∑
j=1

c j

∫ ∞

0
draPα (ra)(κra) jPβ (ra) (43)

with c j an expansion constant and the sum over j (not the
same as partial waves 	) converges since effectively κra  1.
For example, for n = 2 levels of a hydrogenic ion (see Ap-
pendix C)

lim
r→∞

M (2)
2p,2p(r; κ )

M (1)
2s,2p(r; κ )

= 10Z2
N

3
√

3
(
Z2

N + κ2
)[

ZNκ− 2

ZN r
+ O(r−2)

]
.

(44)

This ratio goes as r−1 for κ → 0, and the interaction ap-
proaches the pure Coulomb potential but goes to ∼0.962Z2

N
as κ approaches the maximum value ZN [see Eq. (38)]. The
present work (see Sec. V) is consistent to order κ2r2

a [11] re-
taining up to the quadrupole term in the multipole expansion.

D. Strong collisions

The screening of the radiator-plasma interaction has neg-
ligible effect on close collisions. As such, the small r
dependence of the radial integrals for the screened Coulomb
radiator-plasma interaction follows closely those for the un-
screened results again leading to vanishing terms for 	 � 1
and canceling divergences for the monopole term.

E. Comparison of monopole terms

The radial integrals for the monopole terms are presented
in Fig. 2 for the 1s level of neutral hydrogen with κ = 0.1 for
the screened matrix elements. In addition, the figure displays
the screening function

S(r) = 1 −
∫ r

0
dra[P1s(ra)]2

= e−2r (1 + 2r + 2r2), (45)

which represents the screening of the nucleus by the bound
electron. As shown in Fig. 2, the 	 = 0 matrix element for
the Coulomb interaction vanishes outside the effective size
of the radiator because the bound electron fully screens the
nucleus. There is, however, a significant different behavior
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1s,1s(r; κ )G0(r)/r (left y axis) for the n = 1 level in hydrogen as

well as the screening function (logarithmic right y axis) as function
of radius.

for U (0)
1s,1s(r; κ ). This difference is due to the screening cloud

associated with the perturber in the screened interaction. Far
away the radiator does not interact with the perturber through
the monopole term. As an unscreened perturber approaches
within the extent of the radiator, the bound electron screening
of the nucleus decreases, and the interaction increases diverg-
ing at the origin. On the other hand, as a screened perturber
approaches, the screening cloud penetrates the radiator before
the perturber. Since the cloud has opposite charge to the per-
turber, it yields a negative contribution as shown in Fig. 2. As
the screened perturber gets closer to the nucleus, the bound
electron and screening cloud shield less effectively and the
interaction approaches the unscreened result. This description
applies to neutral and charged radiators since the perturbers
are interacting only with the radiator internal states. There is,
of course, the Vnet interaction in either Eq. (6) or Eq. (25)
describing the center-of-mass motion, which does not affect
the arguments.

V. NUMERICAL METHODS

A variant of computer simulations (CS) described in
Ref. [27] is used. Briefly, Eq. (3) is numerically solved by
introducing the time-development operator U (t ) in the inter-
action representation,

ih̄
dU (t )

dt
= V̂I (t )U (t ) (46)

with

V̂I (t ) = eiH0t/h̄VI (t )e−iH0t/h̄. (47)

The time evolution of the dipole operator is then given by

�d (t ) = U†(t )eiH0t/h̄ �de−iH0t/h̄U (t ) (48)

with Fourier transform

�d (ω) =
∫ ∞

0
dteiωt �d (t ). (49)

Assuming the radiator density matrix is diagonal, which is
customary in line shape broadening calculations [5], together

with the Wiener-Khinchin theorem, Eq. (2) can be written as

C(t ) =
∑

i f

ρi

∫ ∞

0
dω e−iωt 〈| �d fi(ω)|2〉. (50)

Finally, Eq. (1) becomes

I (ω) ∝
∑

i f

ρi〈| �d fi(ω)|2〉, (51)

where the sums are over initial and final states i and f , respec-
tively, and the plasma average denoted by the angle brackets
is accomplished by averaging over CS runs.

A. TMD simulations

The motion of the plasma quasiparticles (both plasma
electrons and ions) is described by the screened monopole
interaction in Eq. (25) using a velocity Verlet algorithm [31].
The simulation follows the reduced-mass model [18] with a
fixed, static radiator at the center of a spherical box of radius
several times the electron Debye length to ensure convergence
[32]. Whenever a perturber exits the simulation volume, it
is reinjected at a random point on the sphere surface with
a velocity randomly chosen according to the 2D Gaussian
distribution in the tangential plane and Rayleigh distribution
in the radial direction. Therefore, the available phase-space
is well represented in spite the relatively small number of
perturbers. If an electron becomes “bound” (negative kinetic
plus potential energy), then it is replaced according to the
reinjection procedure above.

Each ion species σ is assigned a different screening length.
For a weakly coupled plasma, the inverse screening length κσ

includes screening by all other charged particles with the same
or lesser mass,

κ2
σ =

∑
σ ′(mσ ′�mσ )

4πnσ ′Z2
σ ′

T
, (52)

with mσ and nσ the mass and number density of species σ in
the plasma and T the plasma temperature in hartree energy
units. When the plasma coupling is significant (as in the cases
considered below) the screening is chosen to reproduce the
electric microfield distribution obtained from a fully interact-
ing N-body CS or from the APEX model [33]. For electrons,
the Debye screening length is always assumed,

κ2
e = 4πne

T
, (53)

and dynamic screening is neglected, which is known to be
negligible except for a minor effect at detuning energies near
the plasma frequency [34,35].

The TMD simulations are verified to be thermodynam-
ically sound. For example, the simulated ion and electron
radial distributions functions about the radiator are compared
against exact analytical result

gσ (r) = exp

{
−ZnetZσ

T

e−κσ r

r

}
(54)
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FIG. 3. Examples of radial distribution functions around the
radiator (Znet = 17). Upper panel: 100 ions, Zi = 17, ni = 5.9 ×
1022 cm−3, Ti = 800 eV, κi = 5.3 × 107 cm−1. Lower panel: 1700
electrons, ne = 1024 cm−3, Te = 800 eV, κe = 4.8 × 107 cm−1. The
solid lines are analytical results of Eq. (54). Circles are results of
TMD, box symbols represent results of simulations with the “bound”
electrons allowed.

(recall that Zσ includes the sign of the perturber charge),
which for a finite volume V is rescaled by

g′
σ (r) = gσ (r)

V∫
V dV gσ (r)

. (55)

The comparisons in Fig. 3 show good agreement. It is empha-
sized that in the electron case, the results in Fig. 3 retain the
“bound” electrons. That is, the analytic expression in Eq. (54)
accounts for all possible states of the electrons including
resonant and bound orbits. Results excluding the “bound”
electrons from the simulations, used in the line shape calcula-
tions, are also plotted in Fig. 3 and not surprisingly deviate
from Eq. (54) at short distances. Interesting treatments of
bound electrons as well as electron recombination and ion-
ization processes using classical MD simulations have been
attempted [36–38] but are beyond the scope of the present
work.

The Debye potentials are also used to calculate V̂I (t ) in
Eq. (46). There are several possible approaches to store time
sequences and solve the Heisenberg equation for the radiator
dipole. The most general saves the position of all perturbers
at every time step demanding substantial storage and I/O
resources. Alternatively, a more efficient method separates

N + 2 N + 3 N + 4 N + 5 N + 6
Time step

10

100

1000

10000

|F
|/
F

0

N + 4¼
N + 4½

Exact solution
Fixed Δt
Linear interpolation

r-interpolation

Fractional Δt
r-interpolation with fractional Δt

FIG. 4. Magnitude of the dipole electric field (in units of the
Holtsmark field F0) as a function of time during a strong electron
collision event using different interpolation approaches. The time
scale is in units of the base TMD time step. The small circles indicate
time steps of the adaptive ODE solver of Eq. (46), becoming denser
for a stronger perturbation.

perturbers into “exact” and “multipole” groups. The scheme
only stores the position of “exact” perturbers within a sphere
of radius Rexact dictated by the requirement of accurate radial
integrals (e.g., see Fig. 1 for the Coulomb potential). The
number of “exact” perturbers (mostly electrons) is therefore
time dependent and in the numerical examples below varies
from a few to several tens still constituting a small fraction
of the total perturber number. The remaining “multipole”
perturbers outside the sphere are treated in the multipole
expansion approximation, and the electric field and field gra-
dients are stored as in the usual simulations. In the case
where the radiator effective size is much smaller than the
plasma screening length (applies to cases considered here),
the radiator-perturber interaction reduces to

VI = �ra · �F + 1

6

∑
i j

dFi

dx j
Qi j + r2

a

6
�∇ · �F (56)

with �F the electric field produced by the “multipole” per-
turbers at the radiator nucleus, xi the ith Cartesian component
of �ra, and Qi j the traceless quadrupole radiator moment. The
last term has long been a subject of debate but is present in a
consistent expansion [11].

B. Time intervals

Sufficiently small time intervals are crucial to track ac-
curately strong radiator-electron collisions in the simulation
histories and the differential equation. Although an adaptive
time step has long been used for solving the differential equa-
tion in the CS simulations [27], interpolation is still necessary
to obtain VI (t ) between the fixed time step provided by the
CS. The problem becomes acute for close collisions when
the electron kinetic energy greatly exceeds the typical thermal
energy. Although such collisions are rare, they are important
for line broadening and the usual fixed time step proportional
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FIG. 5. Shapes of Ar XVIII Ly-α calculated in the dipole approximation assuming ne = 1024 cm−3, T = 800 eV (a) and ne = 1025 cm−3,
T = 800 eV (b). Results of the present work (red solid lines) are compared to those of Ref. [9] (black dashed lines). Also shown are CS results
without ion dynamics (blue dot-dashed lines).

to n
− 1

3
e

√
me/Te is highly inefficient or inaccurate depending on

the proportionality constant. Instead, an adaptive time step is
adopted to represent the time histories from the CS.

The criterion requires that the position vector of any per-
turber not rotate by more than π/2 radians during a time step
as predicted by the Verlet algorithm. If the criterion is not
satisfied, the time step is halved until met. An interpolation is
performed for values at times between the variable time steps.
For “exact” perturbers the position vectors are interpolated.
For “multipole” perturbers the quantity �f = �F/F 3/2 is inter-
polated. That is, for tN � t � tN+1

�f (t ) = �f (tN ) + t − tN
tN+1 − tN

[ �f (tN+1) − �f (tN )] (57)

followed by �F = �f / f 3. If the field magnitude is much larger
than the typical Holtsmark value, the nearest-neighbor ap-
proximation with �f ∝ �r is valid and, as shown below, provides
a better estimate of the field.

The procedure is demonstrated in Fig. 4 with a strong col-
lision event. In the figure, the minimal approach distance (and
maximum electric field) occurs between the N + 4 and N + 5
time step with the electron nearly backscattering. The danger

of using large time intervals is clear, potentially producing
orders of magnitude error. On the other hand, adding only
two additional time steps the electron trajectory around the
perihelion splits into arcs of less than π/2 radians and suffices
to generate good interpolation results.

VI. NUMERICAL RESULTS

Line shape function calculations using the TMD simula-
tions were performed for the lowest members of the Lyman
series of hydrogenic Ar at the plasma conditions consid-
ered by Woltz and Hooper [9] (hereafter WH), namely, ne =
1024 cm−3 and 1025 cm−3, T = 800 eV, and ion perturbers
with Zi = 17. For the sake of comparisons, some simpli-
fying assumptions in WH were adopted: the nonquenching
approximation and neglected spin-orbit coupling. For these
calculations, the effective screening parameter for the ions
was chosen to achieve the best match with the peak of the
APEX distribution.

Line shapes from CS for Ly-α, Ly-β, and Ly-γ are offered
in Figs. 5–7, respectively, in the “standard” dipole radiator-
perturber interaction approximation, which keeps only the
first term in Eq. (56) for all perturbers. These are compared
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FIG. 6. Same as Fig. 5, but for Ar XVIII Ly-β.
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FIG. 7. Same as Fig. 5, but for Ar XVIII Ly-γ .

with the corresponding electron second-order collision the-
ory and quasistatic ion results from WH. The agreement is
reasonable at the lower density but worsens at the larger
density, particularly about the central part of Ly-α dominated
by electrons. To eliminate contribution of ion dynamics, CS
calculations were repeated with stationary ions, resulting in
minor changes only. Thus, a cause of this discrepancy remains
unknown.

For purpose of analysis, it is possible to perform calcula-
tions retaining only a subset of the terms in the expansion of
the full interaction and results for Ly-α are given in Fig. 8.
It follows from the figure that the “standard” dipole approx-
imation overestimates the broadening compared to the full
interaction. This is due to a partial cancellation of effects
in the latter calculation: (1) reduction of the interaction at
small radii and (2) additional broadening from the monopole
and quadrupole terms. Similar conclusions were drawn by
WH for the lower density case, except they reported a minor
increase in line width for the full Coulomb calculation. The
nondipole terms are also responsible for a line shift, explic-
itly neglected by WH. The major contribution is a red shift
by the monopole term of penetrating electrons screening the
bound electron from the nuclear charge [17] often called the
plasma polarization shift (PPS). The PPS is partly offset by

the quadrupole contributions, which do not lead to an overall
line shift [39], but rather a line asymmetry due to the central
and side components shifting in opposite directions. For these
and consequent calculations, Rexact (the radius within which
electron penetration is treated exactly) is set to be 10−8 cm,
which is further discussed below.

The Ar XVIII Ly-β line results presented in Fig. 9 are
unsurprisingly dominated by the ion microfield displaying the
characteristic double peak shape. Consequently, the effects
of electron-penetrating collisions are less pronounced. Nev-
ertheless, the same qualitative conclusions can be drawn; the
standard dipole approximation overestimates the broadening.

These effects are amplified for higher line series mem-
bers but without changing the qualitative picture as shown
in Fig. 10 for the Ly-γ line. One notable difference is the
pronounced asymmetry at the higher density due to the dif-
ferential shifts from the 	 = 0 and 	 = 2 terms. The effects
discussed above are visible in the far line wings and cannot
be solely described by the ion electric microfield distribu-
tion. Although less pronounced in the Ly-α and Ly-β lines,
the differences can be seen in the logarithmic scale used in
Fig. 11. First, the standard dipole approximation substantially
overestimates the wings. Second, an accurate description of
the far wing requires both the 	 = 0 and 	 = 1 terms in the
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FIG. 8. Shapes of Ar XVIII Ly-α calculated in various schemes for ne = 1024 cm−3, T = 800 eV (a) and ne = 1025 cm−3, T = 800 eV
(b) assumed. Multipole terms retained in Hamiltonian are indicated in the legend. For comparison, shown also are results of the standard
dipole approximation (these are the line shapes shown by the solid lines in Fig. 5).
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FIG. 9. Same as Fig. 8, but for Ar XVIII Ly-β.

expansion of the full interaction with negligible contributions
from the higher poles.

The dependence of the width and shift for the Ly-α line
on Rexact is shown in Fig. 12. The line width diverges since
the quadrupole term goes to infinity for vanishing Rexact. This
divergence is absent in the 	 = 2 term in the expansion of
the full interaction. Since most of the shift is due to the
PPS, which vanishes without penetrating collisions, the shift
requires larger Rexact than the width before it converges.

The choice of Rexact = 10−8 cm is justified for the Ly-β line
in Fig. 13, which shows the line shape converged. Since only
the 	 � 2 terms are considered for the “multipole” electrons
outside Rexact, the convergence in Fig. 13 also demonstrates
that higher multipoles are negligible at large radii. Note that
calculations neglecting the 	 > 2 terms for “exact” electrons
inside Rexact resulted in nearly indistinguishable results. Thus,
keeping only the 	 � 2 terms, which significantly reduces the
computational complexity, suffices to produce accurate line
shapes.

VII. CONCLUSION

Past calculations of spectral line broadening by plasmas
using molecular dynamics have relied on the multipole expan-
sion of the radiator-plasma interaction often only keeping the
dipole term. The present work shows how to extend the com-

puter simulations to account for the full Coulomb or screened
Coulomb radiator-plasma interactions for hydrogenic sys-
tems. The full interaction treatment removes inherent strong
collision divergences in the multipole expansion approxima-
tion previously avoided with ad hoc cutoffs [7]. Furthermore,
the full interaction includes the plasma polarization shift pro-
duced by perturbers penetrating the wave function of the
radiating bound electrons.

A scheme was developed to avoid the extensive I/O
requirements in a brute force approach to describe the
time-dependent positions of all plasma particles. Instead, a
relatively few perturbers near the radiating atomic system
need be described in detail while the remaining vast majority
are accurately treated by the usual multipole approach only
requiring the electric field and field inhomogeneities at the
radiator nucleus.

The computer simulation with noninteracting plasma
quasiparticles and screened Coulomb radiator-plasma inter-
actions was applied to the hydrogenic Ar Ly-α, Ly-β, and
Ly-γ spectral lines in a dense argon plasma at free electron
densities of 1024 and 1025 cm−3 and temperature of 800 eV
. The results were compared to earlier calculations using full
Coulomb radiator-electron interactions in second-order theory
and the standard dipole interaction for quasistatic ions [9]. The
results are in reasonable agreement at the lower density but
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FIG. 10. Same as Fig. 8, but for Ar XVIII Ly-γ .
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FIG. 11. Data from Fig. 9(b) presented in the semilogarithmic
scale.

significantly differ at the higher one in the case of Ly-α. It
was found, in qualitative agreement with the previous work,
that the “standard” dipole approximation overestimates the
broadening compared to the dipole term in the exact interac-
tion but contribution of the 	 �= 1 poles, mostly monopole and
quadrupole, roughly compensates for the difference. Further-
more, it was shown that the far line wings are not accurately
described by the standard dipole approximation. Instead, the
wings depend on both the 	 = 0 and 	 = 1 terms in the partial
wave expansion of the full radiator-perturber interaction. The
monopole term also contributes to a significant shift and a line
shape asymmetry. To a lesser extent, the quadrupole interac-
tion is another source of asymmetry, resulting in an apparent
minor shift of lines with a central component (Ly-α, Ly-γ ) in
the direction opposite to that of the monopole PPS.

With the line shape, including the shift, obtained with
minimal approximating assumptions, the present approach is
important for diagnostics of various plasmas, including cases
where a precise relation between the width and shift is crucial
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FIG. 12. The width (FWHM) and shift of Ar XVIII Ly-α as a
function of Rexact assuming ne = 1024 cm−3 and T = 800 eV. Typical
extension sizes of the n = 1 and n = 2 electron-shell clouds are
indicated, in units of the ZN -scaled (ZN = 18) Bohr radius.
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FIG. 13. Ar XVIII Ly-β shapes calculated for various values of
Rexact (indicated in the legend) assuming ne = 1024 cm−3 and T =
800 eV.

[40] or presents a challenge [41]. A few possible directions
for extending the approach exist. One is using full MD (FMD)
accounting for the Coulomb interactions between all particles,
eliminating the Debye quasiparticle approximation of TMD.
The significantly increased computational costs imposed by
FMD would be partly offset by the simpler calculation of
VI (cf. expressions in Appendixes B and C). Note that the
optimization techniques used in this study (separation of the
perturbers into “exact” and “multipole” groups, and adaptive
time steps for storing field and perturber coordinate histories)
are equally applicable to FMD. In any variant of MD, the
motion of a perturber penetrating the bound electron cloud of
the radiator is governed by the monopole interaction with an
effective Z∗(r), in general ZN < Z∗ < ZN + 1. For ZN � 1,
as in the present work, this correction is largely unimpor-
tant. However, for neutral or weakly ionized radiators this
effect should be investigated. Application to nonhydrogenic,
multielectron radiators will require numerical evaluation of
matrix elements on a grid of r with the radial functions
provided by an atomic structure package (e.g., [21,22]) and
using interpolation. Even for hydrogen-like radiators, more
complex calculations may be required for accurate line shape
modeling. For example, the spin-orbit coupling, neglected in
the present calculations, is substantial for the Ar XVIII Ly-
α line, exceeding the width of its central Stark component
at the lowest density considered here. Furthermore, inelastic
(“quenching”) collisions between states with different n’s also
contribute to the line width and shift. A comparison made in
Ref. [9] with earlier full-Coulomb calculations [42] indicated
a modest effect (10%–20%) of the quenching collisions on
the Ly-α and Ly-β broadening at 1024 cm−3. On the other
hand, towards higher density the Ly-γ shape will likely be
strongly affected, entirely disappearing at 1025 cm−3 due to
the ionization potential depression [43].
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APPENDIX A: REDUCED MATRIX ELEMENTS
FOR HYDROGENIC RADIATORS

For hydrogenic systems the reduced matrix elements are
written in terms of 3n- j symbols [21]. For arbitrary radial
function f (ra)√

4π

2	 + 1
〈α‖ f (ra)Y	m(r̂a)‖β〉

= A(	)
αβ

∫ ∞

0
draPα (ra) f (ra)Pβ (ra), (A1)

where Pα (r) is the hydrogenic reduced radial wave function
for the isolated radiator state |α〉.

For states including fine structure, that is, |α〉 =
|nα	αsα jαmα〉 with nα , 	α , and sα respectively the principal,
orbital, and spin quantum numbers, plus jα and mα the total
angular momentum and magnetic quantum numbers, the an-
gular factors are given by

A(	)
αβ = δsαsβ

(−1) jβ+ 1
2

× √
(2 jα + 1)(2 jβ + 1)(2	α + 1)(2	β + 1)

×
{
	α sα jα
jβ 	 	β

}(
	α 	 	β

0 0 0

)
(A2)

If neglecting spin, then the state is described by |α〉 =
|nα	αmα〉 and

A(	)
αβ = (−1)	α

√
(2	α + 1)(2	β + 1)

(
	α 	 	β

0 0 0

)
(A3)

It follows from the 3- j symbol that for 	 = 0 the reduced
matrix elements are diagonal in orbital angular momentum
quantum numbers.

APPENDIX B: ATOMIC INTEGRALS FOR COULOMB
INTERACTION

The radial contribution to the atomic matrix elements for
the full Coulomb radiator-perturber interaction in Eq. (17) is
given by

U (	)
αβ (r) =

∫ ∞

0
draPα (ra)

(
δ	0

r
− r	

<

r	+1
>

)
Pβ (ra), (B1)

where Pα (ra) is the reduced radial wave function for radiator
internal state |α〉. These integrals yield analytical results for
hydrogenic wave functions [23] and scale as [21]

U (	)
αβ (r; ZN ) = ZNU (	)

αβ (r → ZN r; ZN = 1) (B2)

with ZN the radiator nuclear charge. In addition, for 	 �
1 the radial matrix elements can be expressed in the

form

U (	)
αβ (r; ZN = 1) = − R(	)

αβ

r	+1

[
1 − e−(na+nb)r/(nanb) p(	)

αβ (r)
]
(B3)

with p(r) a polynomial in r. As mentioned in Sec. III B,
for perturbers sufficiently distant from the radiator a simpli-
fied treatment is possible by neglecting the second term in
Eq. (B3).

Expressions are provided for the hydrogen Ly-α line.
These were generated using an algebraic language [44], which
also generates FORTRAN or C forms minimizing errors in cod-
ing. The r → 0 limits are useful for numerical calculations.
There are respectively 10 and 20 terms for the Ly-β and Ly-γ
lines, and the expressions are lengthy and consequently not
included but available on request.

1. Principal quantum number n = 1

The angular factors constrain the calculations to one radial
integral,

U (0)
1s,1s(r) = e−2r

r
(1 + r)

= 1

r
− 1 + 2r2

3
+ 2r3

3
+ O(r4). (B4)

2. Principal quantum number n = 2

The angular factors constrain the calculations to only four
radial integrals,

U (0)
2s,2s(r) = e−r

8r
(8 + 6r + 2r2 + r3)

= 1

r
− 1

4
+ r2

12
− r3

12
+ O(r4), (B5)

U (0)
2p,2p(r) = e−r

24r
(24 + 18r + 6r2 + r3)

= 1

r
− 1

4
+ r4

480
− r5

720
+ O(r6), (B6)

U (1)
2s,2p(r) = 3

√
3

r2

(
1 − e−r

4∑
j=0

r j

j!

)

=
√

3

40
r3

(
1 − 5r

6
+ 5r2

14

)
+ O(r6), (B7)

and

U (2)
2p,2p(r) = −30

r3

[
1 − e−r

(
4∑

j=0

r j

j!
+ r5

144

)]

= − r2

24

(
1 − 5r2

14
+ 5r3

24

)
+ O(r6). (B8)
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APPENDIX C: ATOMIC INTEGRALS FOR SCREENED
COULOMB INTERACTION

The radial matrix elements for the screened Coulomb po-
tential are defined in Eq. (30) as

U (	)
αβ (r; κ ) = δαβδ	0

e−κr

r
− 2	 + 1√

r

×
∫ ∞

0

dra√
ra

Pα (ra)I	+ 1
2
(κr<)K	+ 1

2
(κr>)Pβ (ra)

(C1)

with Iμ(x) and Kμ(x) modified Bessel functions of the first and
third kind, respectively [26]. These integrals scale as

U (	)
αβ (r; κ; ZN ) = ZNU (	)

αβ

(
ZN r; Z−1

N κ
)

(C2)

for nuclear charge ZN . The separation in Eq. (32) has the short-
ranged contribution B(	)

αβ (r; κ ) that scales the same as Eq. (C2).
The long-range contribution in Eq. (32) scales as

R(	)
αβ (κ; ZN )G	(r; κ ) = ZN R(	)

αβ

(
Z−1

N κ
)
G	

(
ZN r; Z−1

N κ
)

(C3)

and is consistent with Eq. (C2). As for the Coulomb case, only
results for the Ly-α line are provided below.

1. Principal quantum number n = 1

The angular factors limit the matrix elements to the
monopole term,

R(0)
1s,1s(κ ) = κ2(8 − κ2)

(4 − κ2)2
(C4)

and

B(0)
1s,1s(r; κ ) = 4

e−2r

r

4(1 + r) − κ2r

(4 − κ2)2
, (C5)

conditional on a screening length sufficiently large to make
κ < 2 (recall length units are in Bohr radius) or the integral
diverges. This restriction on κ is a result of the separation into
short- and long-ranged contributions. That is, Eq. (C1) yields

U (0)
1s,1s(r; κ ) = 1

(4 − κ2)2r

× {(κ2 − 8)κ2e−κr + 4[1 + (4 − κ2)r]e−2r}

= 1

r
−

(
κ + 4

(2 + κ )2

)
+ κ2r

2

+ 16 + 16κ − κ3(2 + κ )2

6(2 + κ )2
r2 + O(r3), (C6)

which is valid for all κ � 0. Furthermore,

U (0)
1s,1s(r; κ → 2) = e−2r

r

(
1 − r

4
− r2

2

)
(C7)

and does not diverge despite the denominator in Eq. (C6).

2. Principal quantum number n = 2

There are four terms. The radiator moments are

R(0)
2s,2s(κ ) = κ2(7 − 4κ2 + 4κ4 − κ6)

(1 − κ2)4
, (C8)

R(0)
2p,2p(κ ) = κ2(5 − 6κ2 + 4κ4 − κ6)

(1 − κ2)4
, (C9)

R(1)
2s,2p(κ ) = −3

√
3(1 + κ2)

(1 − κ2)4
, (C10)

and

R(2)
2p,2p(κ ) = 30

(1 − κ2)4
, (C11)

which are conditional on κ < 1. For the short-ranged contri-
butions one gets

B(0)
2s,2s(r; κ ) = 1

8(1 − κ2)4

e−r

r

[
(8 + 6r + 2r2 + r3) + κ2(24 + 8r − 3r3) + κ4(16 − 10r − 6r2 + 3r3) + κ6r(4 + 4r − r2)

]
,

(C12)

B(0)
2p,2p(r; κ ) = 1

24(1 − κ2)4

e−r

r
[(24 + 18r + 6r2 + r3) + 3κ2(8 − 4r − 4r2 − r3) − 3κ4r(2 − 2r − r2) − κ6r3], (C13)

B(1)
2s,2p(r; κ ) = −

√
3

8(1 − κ2)4

e−r

r2
[(24 + 24r + 12r2 + 4r3 + r4) + 3κ2(8 + 8r − 2r3 − r4) − 3κ4r2(4 − r2) + κ6r3(2 − r)],

(C14)

and

B(2)
2p,2p(r; κ ) = 5

24(1 − κ2)4

e−r

r3
[(144 + 144r + 72r2 + 24r3 + 6r4 + r5) − 3κ2r2(8 + 8r + 4r2 + r3) + 3κ4r4(2 + r) − κ6r5],

(C15)

also conditional on κ < 1.
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Explicit expressions of U (	)
αβ (r; κ ) for n = 2 are not provided since they are available by combining results above using

Eq. (32). Instead, results for U (	)
αβ (r → 0; κ ) are given, which are convenient for numerical calculations:

U (0)
2s,2s(r; κ ) = 1

r
−

[
κ + 1 + 2κ2

4(1 + κ )4

]
+ κ2r

2
+

{
1

2
−

[
κ + 1 + 2κ2

4(1 + κ )4

]
κ2

}
r2

6
+ O(r3), (C16)

U (0)
2p,2p(r; κ ) = 1

r
−

[
κ + 1

4(1 + κ )4

]
+ κ2r

2
−

[
κ + 1

4(1 + κ )4

]
κ2r2

6
+ O(r3), (C17)

U (1)
2s,2p(r; κ ) = − κ2r

√
3

4(1 + κ )4

[
1 − 1 + 4κ + 6κ2 + 4κ3

10κ2
r2 + (1 + κ )4

12κ2
r3 + O(r4)

]
, (C18)

and

U (2)
2p,2p(r; κ ) = − r2

24(1 + κ )4

[
(1 + 4κ + 5κ2) − 5 + 20κ + 29κ2 + 16κ3

14
r2 + 5(1 + κ )4

24
r3 + O(r4)

]
. (C19)

3. Expressions for G�(r; κ)

Using known properties of the Bessel function [45], write

G	(r; κ ) = − (−r)	

(2	 − 1)!!

(
1

r

∂

∂r

)	 e−κr

r
, (C20)

which yields

G0(r; κ ) = −e−κr

r
, (C21)

G1(r; κ ) = −e−κr

r2
(1 + κr), (C22)

G2(r; κ ) = −e−κr

r3

(
1 + κr + κ2r2

3

)
, (C23)

G3(r; κ ) = −e−κr

r4

(
1 + κr + 2κ2r2

5
+ 2κ3r3

15

)
, (C24)

and

G4(r; κ ) = −e−κr

r5

(
1 + κr + 3κ2r2

7
+ 2κ3r3

21
+ κ4r4

105

)
,

(C25)
required in the present work.

APPENDIX D: PENETRATING COLLISIONS

The contribution from penetrating collisions in the radial
matrix elements are given in Eq. (37),

B(	)
αβ (r; κ ) = (2	 + 1)

∫ ∞

r

dra√
rar

Pα (ra)Pβ (ra)

× [
I	+ 1

2
(κra)K	+ 1

2
(κr) − I	+ 1

2
(κr)K	+ 1

2
(κra)

]
.

(D1)

Using the known expression for the hydrogenic wave func-
tions [21], write

Pα (ra) ∝ e−ra/nα fα (ra) (D2)

with fα (x) a polynomial in x. The modified Bessel function of
the third kind can be written as√

2

πz
K	+ 1

2
(z) = e−z

z	
χ	(z) (D3)

with χ	(z) a polynomial in z. The modified Bessel function of
the first kind has the asymptotic expansion√

2

πz
I	+ 1

2
(z) = ez

z
ξ	(z) = ez

z

∞∑
j=0

b(	)
j

z j
(D4)

defining ξ	(z) with b(	)
j constant coefficients.

Collecting results, the first term in Eq. (D1) is proportional
to

χ	(κr)

r	

∫ ∞

r
dra exp

(
−nα + nβ

nαnβ

ra

)

× fα (ra) fβ (ra)e−κ (r−ra ) ξ	(κra)

ra

= exp

(
−nα + nβ

nαnβ

r

)
χ	(κr)

r	

×
∫ ∞

0
dx exp

[
−

(
nα + nβ

nαnβ

− κ

)
x

]
F1(x + r). (D5)

The second term in Eq. (D1) is proportional to

ξ	(κr)

r

∫ ∞

r
dra exp

(
−nα + nβ

nαnβ

ra

)

× fα (ra) fβ (ra)e−κ (r−ra ) χ	(κra)

r	
a

= exp

(
−nα + nβ

nαnβ

r

)
ξ	(κr)

r

×
∫ ∞

0
dx exp

[
−

(
nα + nβ

nαnβ

+ κ

)
x

]
F2(x + r), (D6)

where

F1(x)
F2(x)

}
= fα (x) fβ (x)

{
ξ	(κx)/x
χ	(κx)/x	 . (D7)

Both integrands vanish as x → ∞ with the condition [re-
quired only for Eq. (D5)]

0 � κ <
nα + nβ

nαnβ

, (D8)
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leading to finite integrals. Thus,

B(	)
αβ (r → ∞; κ ) ∝ exp

(
−nα + nβ

nαnβ

r

)
(D9)

and the penetrating collision contributions vanish exponen-
tially with perturber distance.
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Nikolić, M. A. Gigosos, and M. Á. González, Measurements of
Hβ Stark central asymmetry and its analysis through standard
theory and computer simulations, Phys. Rev. E 79, 046402
(2009).

[15] A. V. Demura, Beyond the linear Stark effect: A retrospective,
Atoms 6, 33 (2018).

[16] T. A. Gomez, T. Nagayama, P. B. Cho, D. P. Kilcrease,
C. J. Fontes, and M. C. Zammit, Introduction to spectral line
shape theory, J. Phys. B: At. Mol. Opt. Phys. 55, 034002
(2022).

[17] G. C. Junkel, M. A. Gunderson, C. F. Hooper, and D. A.
Haynes, Full Coulomb calculation of Stark broadened spectra
from multielectron ions: A focus on the dense plasma line shift,
Phys. Rev. E 62, 5584 (2000).

[18] J. Seidel and R. Stamm, Effects of radiator motion on plasma-
broadened hydrogen Lyman-β, J. Quant. Spectrosc. Radiat.
Transfer 27, 499 (1982).

[19] R. Stamm, B. Talin, E. L. Pollock, and C. A. Iglesias, Ion-
dynamic effects on the line shapes of hydrogenic emitters in
plasmas, Phys. Rev. A 34, 4144 (1986).

[20] C. A. Iglesias, Reformulation of plasma spectral line broaden-
ing with computer simulations, High Energy Density Phys. 33,
100707 (2019).

[21] R. D. Cowan, The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, 1981).

[22] M. F. Gu, The flexible atomic code, Can. J. Phys. 86, 675
(2008).

[23] B. Zygelman and A. Dalgarno, Impact excitation of the n = 2
fine-structure levels in hydrogenlike ions by protons and elec-
trons, Phys. Rev. A 35, 4085 (1987).

[24] S. Alexiou and A. Poquérusse, Standard line broadening impact
theory for hydrogen including penetrating collisions, Phys. Rev.
E 72, 046404 (2005).

[25] S. Pasternack and R. M. Sternheimer, An orthogonality prop-
erty of hydrogenlike radial functions, J. Math. Phys. 3, 1280
(1962).

[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
Applied Mathematical Series No. 55 (U.S. Government Printing
Office, Washington, DC, 1972).

[27] E. Stambulchik and Y. Maron, A study of ion-dynamics and
correlation effects for spectral line broadening in plasma: K-
shell lines, J. Quant. Spectrosc. Radiat. Transfer 99, 730 (2006).

[28] C. Stehlé, D. Gilles, and A. Demura, Asymmetry of Stark pro-
files, Eur. Phys. J. D 12, 355 (2000).

[29] J. Halenka and W. Olchawa, Inhomogeneity tensors of ion mi-
crofield in Debye plasma at neutral emitter, Eur. Phys. J. D 42,
425 (2007).

[30] C. A. Iglesias, Multipole interaction in spectral line broadening
by plasmas, High Energy Density Phys. 38, 100921 (2021).

[31] L. Verlet, Computer “experiments” on classical fluids. I. Ther-
modynamical properties of Lennard-Jones molecules, Phys.
Rev. 159, 98 (1967).

[32] J. Rosato, H. Capes, and R. Stamm, Ideal Coulomb plasma
approximation in line shape models: Problematic issues, Atoms
2, 253 (2014).

[33] C. A. Iglesias, F. J. Rogers, R. Shepherd, A. Bar-Shalom,
M. S. Murillo, D. P. Kilcrease, A. Calisti, and R. W. Lee,
Fast electric microfield distribution calculations in extreme mat-
ter conditions, J. Quant. Spectrosc. Radiat. Transfer 65, 303
(2000).

[34] T. Hussey, J. W. Dufty, and C. F. Hooper, Kinetic theory of
spectral line broadening, Phys. Rev. A 12, 1084 (1975).

055210-15

https://doi.org/10.1016/0022-4073(79)90049-9
https://doi.org/10.1088/0305-4470/36/22/329
https://doi.org/10.1016/j.hedp.2009.07.001
https://doi.org/10.1088/0022-3727/47/34/343001
https://doi.org/10.1103/PhysRevA.30.2771
https://doi.org/10.1103/PhysRevE.66.066403
https://doi.org/10.1103/PhysRevA.94.022501
https://doi.org/10.1103/PhysRevA.30.468
https://doi.org/10.1016/j.hedp.2017.05.003
https://doi.org/10.1016/j.hedp.2020.100743
https://doi.org/10.1103/PhysRevLett.127.235001
https://doi.org/10.3847/1538-4357/ab479d
https://doi.org/10.1103/PhysRevE.79.046402
https://doi.org/10.3390/atoms6020033
https://doi.org/10.1088/1361-6455/ac4f31
https://doi.org/10.1103/PhysRevE.62.5584
https://doi.org/10.1016/0022-4073(82)90102-9
https://doi.org/10.1103/PhysRevA.34.4144
https://doi.org/10.1016/j.hedp.2019.100707
https://doi.org/10.1139/p07-197
https://doi.org/10.1103/PhysRevA.35.4085
https://doi.org/10.1103/PhysRevE.72.046404
https://doi.org/10.1063/1.1703871
https://doi.org/10.1016/j.jqsrt.2005.05.058
https://doi.org/10.1007/s100530070032
https://doi.org/10.1140/epjd/e2007-00039-3
https://doi.org/10.1016/j.hedp.2021.100921
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.3390/atoms2020253
https://doi.org/10.1016/S0022-4073(99)00076-X
https://doi.org/10.1103/PhysRevA.12.1084


EVGENY STAMBULCHIK AND CARLOS A. IGLESIAS PHYSICAL REVIEW E 105, 055210 (2022)

[35] D. B. Boercker, R. W. Lee, and F. J. Rogers, Strong coupling
effects on plasma lineshapes and Thomson scattering signals,
J. Phys. B: At. Mol. Opt. Phys. 16, 3279 (1983).

[36] A. Calisti, S. Ferri, and B. Talin, Classical molecular dynam-
ics model for coupled two component plasmas, High Energy
Density Phys. 5, 307 (2009).

[37] A. Calisti and B. Talin, Classical molecular dynamics model for
coupled two-component plasmas—Ionization balance and time
considerations, Contrib. Plasma Phys. 51, 524 (2011).

[38] F. R. Graziani, V. S. Batista, L. X. Benedict, J. I. Castor, H.
Chen, S. N. Chen, C. A. Fichtl, J. N. Glosli, P. E. Grabowski,
A. T. Graf, S. P. Hau-Riege, A. U. Hazi, S. A. Khairallah,
L. Krauss, A. B. Langdon, R. A. London, A. Markmann,
M. S. Murillo, D. F. Richards, H. A. Scott et al., Large-scale
molecular dynamics simulations of dense plasmas: The Cimar-
ron project, High Energy Density Phys. 8, 105 (2012).

[39] E. Oks, New type of shift of hydrogen and hydrogenlike spectral
lines, J. Quant. Spectrosc. Radiat. Transfer 58, 821 (1997).

[40] B. F. Kraus, L. Gao, K. W. Hill, M. Bitter, P. C. Efthimion,
T. A. Gomez, A. Moreau, R. Hollinger, S. Wang, H. Song, J. J.
Rocca, and R. C. Mancini, Solid-Density Ion Temperature from
Redshifted and Double-Peaked Stark Line Shapes, Phys. Rev.
Lett. 127, 205001 (2021).

[41] C. Stollberg, E. Stambulchik, B. Duan, M. A. Gigosos, D. G.
Herrero, C. A. Iglesias, and C. Mossé, Revisiting Stark width
and shift of He II Pα, Atoms 6, 23 (2018).

[42] H. R. Griem, M. Blaha, and P. C. Kepple, Stark-profile cal-
culations for Lyman-series lines of one-electron ions in dense
plasmas, Phys. Rev. A 19, 2421 (1979).

[43] B. J. B. Crowley, Continuum lowering—A new perspective,
High Energy Density Phys. 13, 84 (2014).

[44] Wolfram Research, Inc., Mathematica, version 11.3
(2018).

[45] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathemat-
ical Methods for Physicists, 7th ed. (Academic, Boston,
2013).

055210-16

https://doi.org/10.1088/0022-3700/16/17/019
https://doi.org/10.1016/j.hedp.2009.04.011
https://doi.org/10.1002/ctpp.201010113
https://doi.org/10.1016/j.hedp.2011.06.010
https://doi.org/10.1016/S0022-4073(97)00087-3
https://doi.org/10.1103/PhysRevLett.127.205001
https://doi.org/10.3390/atoms6020023
https://doi.org/10.1103/PhysRevA.19.2421
https://doi.org/10.1016/j.hedp.2014.04.003

