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Abstract: Stark broadening of Lyman-α of a hydrogen-like atom in the presence of a strong magnetic
field is analyzed. The shape of the central (π) component of the Lorentz–Zeeman triplet is expressed
analytically, taking into account the plasma coupling and microfield dynamic effects. It is shown that
in a sufficiently strong magnetic field, the broadening of this component, contrary to the broadening
of the lateral (σ) ones, is independent of the magnetic field and, therefore, can be used for the plasma
density diagnostics. Comparison with computer simulations at conditions typical for tokamak
divertors and white dwarf atmospheres shows a very good agreement.
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1. Introduction

Hydrogen atom is the simplest and best understood atomic system. It was the first
real physical object to which the quantum mechanical description—first of the “old” Bohr’s
theory [1], then the modern quantum mechanics [2]—was applied and tested against.

The simplest transition in hydrogen or a hydrogen-like ion is Lyman-α (n = 2 → n = 1,
where n is the principal quantum number). Nevertheless, this transition represents a chal-
lenge for some models of plasma line broadening [3]. The reason is a strong influence of
the ion dynamic effect, and in particular the directionality of the ion microfields [4] on the
shape of the central Stark component of this line. Because of this effect, the Stark broad-
ening of Lyman-α changes from the impact broadening [5] in the high-temperature/low-
density regime to the so-called rotation broadening [6] in a low-temperature/high-density
plasma, in a stark contrast to the majority of spectral lines that converge to the quasistatic
lineshape [5].

In the presence of a sufficiently strong magnetic field, Lyman-α assumes a familiar
Zeeman triplet pattern. However, its central (π, ∆M = 0) and lateral (σ±, ∆M = ±1)
components are broadened by the plasma Stark effect differently: Due to the degeneracy
removal by the applied magnetic field, the upper states of the σ components, |2p ± 1⟩,
are subject to the quadratic Stark effect, while that of the π component, |2p0⟩, remains
degenerate with |2s0⟩ and, therefore, linearly depends on the electric field. As a result, the
lateral components become significantly narrower than the central one [7].

2. Analytical Model

As an example, let us assume plasma conditions relevant to tokamak divertors. Specif-
ically, the electron and ion temperature Te = Ti = 1 eV, the electron density ne = 1014 cm−3,
and the magnetic field B on the order of 1 T. A comparison of plasma-broadened Lyman-α
shapes in the presence of the magnetic field is given in Figure 1 (see Section 3 for the
details of these calculations). It is seen that for a non-zero magnetic field, the widths
of the π and σ components of the Zeeman triplet are different, in agreement with the
earlier findings [7]. Notably, as the magnetic-field strength increases, the Stark broaden-
ing of the central component remains nearly constant, whereas the lateral components
become narrower.
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Figure 1. Stark-broadened Lyman-α shapes assuming ne = 1014 cm−3, T = 1 eV, and a few values of
the magnetic field as indicated in the legend.

To understand this result, consider Hamiltonian of the n = 2 manifold under the
crossed F⃗ and B⃗ fields, e.g., see [8]:

V2 =



0 0 f 0

0 −b cos θ
b√
2

sin θ 0

f
b√
2

sin θ 0
b√
2

sin θ

0 0
b√
2

sin θ b cos θ


, (1)

where for compactness f :=
3
Z

F and b :=
α

2
B definitions are used, θ is the angle between F⃗

and B⃗, and F⃗ is assumed to lie along the quantization axis. Here, the spin degree of freedom
is ignored (i.e., the magnetic-field perturbation is assumed to be much stronger than the
fine structure). The atomic units (h̄ = e = me = 1) are used, α is the fine-structure constant,
and Z is the charge of the nucleus (Z = 1 in the case of hydrogen).

The eigenvalues of V2 are

(∆E)2 =
b2 + f 2

2
±

√(
b2 + f 2

2

)2

− f 2b2 cos2 θ. (2)

In the strong-B limit, i.e., b ≫ f , this expression reduces to

∆Eπ = ± f cos θ (3)

and

∆Eσ = ±(b +
f 2

2b
sin2 θ) (4)

for the π and σ components, respectively. Thus, the Stark effect of the central component is
linear (it is split into two sub-components), on the order of f , and independent of b, while
that of the lateral components is quadratic, narrow (≪ f ), and inversely proportional to b.
The intensities of all four components, up to the O

(
( f /b)2) terms, depend neither on the
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field magnitudes nor on the angle between the fields and are equal to 1/3 (σ±) and 1/6
(each of the split-π sub-components) of that of the unperturbed Lyman-α line.

The total area-normalized line shape L(ω) is a sum of the π and σ components which,
after averaging over θ (but keeping f fixed) become, respectively,

Lπ(ω) =


1

6 f
, |ω| ≤ f

0, elsewhere
(5)

and

Lσ(ω) =


b

3 f
√

f 2 − 2b(|ω| − b)
, b ≤ |ω| < b +

f 2

2b
0, elsewhere.

(6)

From Equation (5) it follows that Lπ(ω) assumes a rectangular shape—a result recently
obtained by [9]. Notably, this is the shape of any high-n H-like transition in the quasi-contiguous
(QC) approximation [10]. Therefore, one can directly apply the QC-FFM approach [11] to
obtain the π lineshape accounting for the microfield dynamics through the frequency-
fluctuation model (FFM) [12,13]. Assuming the dynamic broadening of each of the π and
σ± components is independent [14], for a one-component plasma (OCP) one obtains

Lπ(ν̄; ω̄) =
1
π
ℜ J(ν̄; ω̄)

1 − ν̄J(ν̄; ω̄)
, (7)

where ℜ stands for the real part and

J(ν̄; ω̄) =
∫ ∞

0
dτ exp [−ϕ(τ)− i(ω̄ − iν̄)τ] . (8)

Here, the line shape is expressed as a function of the dimensionless reduced detuning
ω̄ = ω/∆0 and ν̄—a single parameter related to the typical frequency of the microfields in
the radiator–perturber center-of-mass frame [15]

wdyn =

√
kTp

mp
+

kTr

mr

(
4πnp

3

)1/3
(9)

via

ν̄ =
1
2

wdyn

∆0
+

1
20

(wdyn

∆0

)2
, (10)

where the second term is a semiempirical correction to recover the impact limit [5]. Zp,
np, mp, and Tp are the charge, density, mass, and temperature of the OCP particles; mr
and Tr are the mass and temperature of the radiator. The normal detuning ∆0 in several
expressions above is defined as

∆0 =
3
Z

F0 , (11)

where F0 = 2π(4/15)2/3Zpn2/3
p is the Holtsmark normal field strength [16].

In Equation (8), ϕ(τ) is the characteristic function of the probability distribution of the
plasma microfield magnitudes β = F/F0

W(β) =
2
π

β
∫ ∞

0
x sin(βx) exp [−ϕ(x)]dx . (12)

For a neutral radiator, one can use [17]

ϕ(x) = x3/2/(1 + 1.295
√

Γpx + 0.606 Γpx) , (13)
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where Γp is the coupling parameter.
To summarize, Equations (7)–(13) allow for calculating the shape of the Lyman-α π

component as broadened by a single plasma species (electrons or ions). The total line shape
is obtained by a convolution of the individual contributions [18].

3. Computer Simulations

A variant of computer simulations (CS) described in Ref. [19] is used. Briefly, the
Heisenberg equation

−i
∂

∂t
d⃗(t) =

[
H(t), d⃗(t)

]
(14)

is numerically solved by introducing the time-development operator U (t) in the interaction
representation,

i
dU (t)

dt
= V̂I(t)U (t) (15)

with
V̂I(t) = eiH0tVI(t)e−iH0t (16)

The time evolution of the dipole operator is then given by

d⃗(t) = U †(t)eiH0td⃗e−iH0tU (t) (17)

with Fourier transform
d⃗(ω) =

∫ ∞

0
dteiωtd⃗(t). (18)

Assuming the radiator density matrix is diagonal, which is customary in line shape
broadening calculations [5], the line shape is

L(ω) ∝ ∑
i f

ρi

〈
|d⃗ fi(ω)|2

〉
, (19)

where the sums are over initial and final states i and f , respectively, and the plasma average
denoted by the angle brackets is accomplished by averaging over CS runs.

The motion of the plasma quasiparticles (both plasma electrons and ions) is described
by the screened monopole interaction using a velocity Verlet algorithm [20]. However, for
the present calculations, the radiators are neutral, therefore, the trajectories of all plasma
particles were assumed to be straight.

Each ion species s is assigned a different screening length. For a weakly coupled
plasma, the inverse screening length κs includes screening by all other charged particles
with the same or lesser mass,

κ2
s = ∑

s′(ms′≤ms)

4πns′Z2
s′

kTs′
, (20)

with ms, ns, and Ts the mass, number density, and temperature of species s in the plasma.
The simulation follows the reduced-mass model [21] with a fixed, static radiator at

the center of a spherical box of radius several times the electron Debye length to ensure
convergence [22]. Whenever a perturber exits the simulation volume, it is reinjected
at a random point on the sphere surface with a velocity randomly chosen according to
the 2D Gaussian distribution in the tangential plane and Rayleigh distribution in the
radial direction.

4. Results and Conclusions

In Figure 2, a comparison between the Lyman-α π line shapes calculated by the
analytical model (Section 2) and computer simulations (Section 3) is shown, indicating a
good agreement between the two.
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Figure 2. Comparison of the Lyman-α π line shape calculated using the computer simulations (CS)
and the analytical model. ne = 1014 cm−3, T = 1 eV, and B = 4 T.

In white dwarf atmospheres, the magnetic field can easily reach hundreds of teslas,
e.g., see [23], with the electron density about 1017 cm−3 to 1018 cm−3 [24]. In Figure 3, a
comparison under such conditions is shown. As in the previous example, a good agreement
is seen. In both examples, the values of the full width at half maximum (FWHM) of the
lineshapes differ by ∼15%.
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Figure 3. Same as Figure 2, but for ne = 1017 cm−3, T = 1 eV, and B = 400 T.

Notably, this value (∼15%) of the extraneous width predicted by the model remains
almost constant over a very wide range of the plasma densities, as shown in Figure 4. Thus,
for practical purposes, it may be suggested to multiply the width given by the model by
the 0.85 factor. It is also noted that the model remains sufficiently accurate even beyond its
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domain of applicability (b ≫ f ): indeed, at ne = 1016 cm−3 (the last datum in Figure 4a),
b ≈ f ; however, the disagreement between the simulations and the model is about 20% or,
using the corrective 0.85 factor, only 5%.
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Figure 4. Comparison of the Lyman-α π broadening as given by the computer simulations and the
model over wide ranges of densities. B = 4 T (a) and B = 400 T (b) are assumed.

To conclude, in this study it is demonstrated that in the strong-B limit, when the three
components of the Lyman-α Zeeman triplet are well-resolved, the broadening of the central,
π component is independent of the magnetic field and, thus, can be used for the plasma
density diagnostics, as has recently been suggested [9]. Furthermore, the shape of this
component is expressed analytically.
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