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Three fluid plasma evolution equations are applied to the problem of magnetic field propagation in
a planar plasma opening switch. For certain initial conditions in which Hall parameter H�1,
magnetic field penetration due to the Hall field, initially, as expected, either opposes or adds to the
hydromagnetic pushing, depending on the polarity of the magnetic field relative to the density
gradient. Later, however, the plasma pushing by the magnetic field is found in the case studied here
to modify the plasma density in a way that the density gradient tends to align with the magnetic field
gradient, effectively turning off the Hall effect. The penetration of the magnetic field then ceases and
plasma pushing becomes the dominant process. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2736353�

I. INTRODUCTION

The mechanism of penetration of a fast-rising magnetic
field pulse into a plasma is a fundamental issue in plasma
physics. A laboratory application in which this issue is cen-
tral is the plasma opening switch �POS�. In such a system, a
pulsed current is conducted through a plasma bridge between
two electrodes, before being rapidly switched to a parallel
load due to a fast rise in the plasma impedance. Plasma
opening switches operating with low density ��1014 cm−3�,
nearly collisionless plasmas have been found to be charac-
terized by a rapid magnetic field penetration that is much
faster than expected by collisional diffusion.1–4 At these low
densities, this has been explained by electron magnetohydro-
dynamic �EMHD� theory,5–7 according to which the Hall
field induces a fast penetration if the scale length of nonuni-
formity L is much smaller than the ion skin depth c /�pi, i.e.,
the Hall parameter H,

H �
c

�piL
=

vA

�iL
, �1�

satisfies H�1. Here vA is the hydromagnetic velocity, ex-
pressed in the form of Alfvén velocity in which the magnetic
field takes its upstream value and the mass density its down-
stream value, and �i is the ion cyclotron frequency. At the
opposite MHD limit, H�1, plasma pushing is expected to
be dominant.8

The evolution of the magnetic field in POS of moderate
densities, in which H�1, was investigated in recent
experiments.9,10,12 One of the goals of the experiments was to
explore which of the two competing processes, plasma push-
ing or magnetic field penetration, becomes dominant. When
H�1 the prediction of the magnetic field evolution is harder
since, because of the plasma pushing, the density is modified
and the value of the Hall parameter H changes in time. In

this paper we demonstrate a case in which, as a result of the
plasma pushing, the density is modified in such a way that
after a certain time the penetration of the magnetic field into
the plasma ceases and the plasma pushing remains the domi-
nant process. This is in contrast to cases shown in previous
theoretical analyses, in which the penetration did not slow
down due to the plasma pushing8 and was even enhanced by
such a pushing.13

When there is more than one particle species, as in the
moderate density POS, the situation is more complicated.
The plasma consists of light and heavy ion species, neutral-
ized by electrons. When H�1, the motion consists of MHD,
along with drifts perpendicular to the magnetic field. Light
and heavy ions drift in opposite directions, parallel or anti-
parallel to the plasma current.

In this paper, three fluid equations of motion8,14–16 are
applied to the POS. We employ the formulation by
Gordeev14 which decomposes the velocity into a MHD part
and a difference velocity between the two ion species.

II. THREE-FLUID EQUATIONS

In the experiment reported in Refs. 9, 10, and 12, there
were two ion species, hydrogen ions with density ni and
carbon ions with density nZ and charge Ze. From quasineu-
trality �negligible Debye length�, the electron density is

ne = ni + ZnZ. �2�

The electron velocity can be expressed in terms of the cur-
rent, as

neve = nivi + ZnZvZ − H � � B . �3�

Here dimensionless variables have been introduced. The
magnetic field, density, and length are normalized to typical
values. Velocities are expressed in terms of Alfvén speed.
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The time is expressed in Alfvén transit times �A=L /vA,
where L is the length. The scaling is discussed in Appendix
A. Since the experiments of interest have low plasma pres-
sure relative to magnetic pressure, the plasma pressure will
be neglected. Neglecting electron inertia, the electron mo-
mentum equation is

E + ve � B = 0 �4�

where the electron pressure is neglected. The dimensionless
ion momentum equations are,

�vi

�t
+ vi · �vi =

1

H
�E + vi � B� , �5�

�vZ

�t
+ vZ · �vZ =

Z

�ZH
�E + vZ � B� , �6�

where �Z is the mass ratio mZ /mi, and the ion pressure is
neglected. The light ion momentum equation �5� can be mul-
tiplied by ni and the heavy ion momentum equation �6� by
�ZnZ, and the equations added together with the electron
equation to obtain the MHD result, where all the terms are
standard except the inertia terms containing vD,

n
�v

�t
+ nv · �v + �Z � · �ninZ

n
vDvD	 = �� � B� � B

+ �n�2v . �7�

Here � is a viscosity. More details of the derivation appear in
Ref. 14, which also contains a more complete dissipative
model than we employ here. The mass density and center of
mass velocity have been introduced,

n = ni + �ZnZ, �8�

nv = nivi + �ZnZvZ �9�

along with the difference velocity

vD = vi − vZ. �10�

Next, the heavy ion equation �6� can be divided by �Z

and subtracted from the light ion equation �5� to give

�vD

�t
=

�

H
vD �

B

B
+ F , �11�

where

� =
ZnB

�Zne
, �12�

F =
�Z − Z

�Zne
� � B � B − v · �vD − vD · �v

− �Z
2 nZvD

n
· �

nZvD

n
+

nivD

n
· �

nivD

n
− ��2vD. �13�

The electron velocity �3� can be expressed as

ve = v + ��Z − Z�
ninZ

nne
vD −

H

ne
� � B . �14�

Using this in the induction equation gives

�B

�t
= � � 
�v + ��Z − Z�

ninZ

nne
vD −

H

ne
� � B	

� B − � � � B� , �15�

where � is the resistivity. The mass density satisfies

�n

�t
= − � · �nv� + ��2n , �16�

where � is a diffusion coefficient, and the electron density
satisfies

�ne

�t
= − � · �nev + ��Z − Z�

ninZ

n
vD	 + ��2ne. �17�

The ion densities can be obtained from the mass density �8�
and electron density �2�,

ni =
�Zne − Zn

�Z − Z
, �18�

nZ =
n − ne

�Z − Z
, �19�

and the ion velocities can be obtained from the mass velocity
and difference velocity,

vi = v +
�ZnZ

n
vD, �20�

vZ = v −
ni

n
vD. �21�

There is now a complete set of equations �7�, �11�, and �15�–
�17�, for the primary variables v, vD, B, n, and ne. The ion
densities ni ,nZ are derived from �18� and �19�, and the ion
velocities from �20� and �21�.

The first term on the right-hand side of �11� causes the
velocity to rotate with angular frequency � /H. The other
terms correspond to inertial and Lorentz acceleration. The
rotation effect appears to be important in making a transition
to MHD behavior in a dense planar plasma opening switch.
After an initial transient involving rotation, vD becomes a
drift aligned with the current. In steady state, from �11�, ne-
glecting pressure and inertial terms,

vD � − H
��Z − Z�

Zn
� � B . �22�

The drift is in the direction of the plasma current.

III. SIMULATION OF A PLANAR PLASMA OPENING
SWITCH

In this section we show simulations of a model planar
plasma opening switch using the equations developed in the
previous section. The simulations were done with a substan-
tially modified version of the M3D �Refs. 17 and 18� code.
In the experiments, collisional dissipation is expected to be
small compared to turbulent dissipation. In particular, ac-
cording to the commonly used Spitzer approach ion-ion col-

053504-2 Strauss et al. Phys. Plasmas 14, 053504 �2007�

Downloaded 29 May 2007 to 132.77.4.43. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



lisions are evidently negligible. Ions ejected from the flash-
board plasma source11 used in this experiment have a
velocity distribution that corresponds to an effective ion tem-
perature greater than 50 eV. Under these conditions the ion-
ion collision frequency is of the order 4�106 s−1; namely,
the time interval between collisions is of the order of the
entire experiment duration �300 ns�. Possibly, there are other
mechanisms that may enhance collision frequency, but these
are not dealt in this work. It is a common practice to use fluid
equations to simulate collisionless or nearly collisionless
plasma. This is often done in magnetic fusion. It is also done
in several theoretical studies5,8,13,15 relevant to the plasma
opening switch problem.

Because of numerical difficulties with low density, the
problem of field penetration from a vacuum region into the
plasma is not considered here. It is assumed that the field has
penetrated into the plasma. The computations are concerned
with the propagation of the magnetic field in the plasma. The
computations used a 50�100 rectangular mesh. The dimen-
sionless radial width is Lx=2.4L, and the vertical length is
Ly =5L, similar to the experiments.9,10,12 Dissipation is added
to the equations; the viscosity had the same magnitude as
resistivity, �=�=2.5�10−2vAL. Rather than using colli-
sional diffusion coefficients,14 the values of � ,� are compat-
ible with anomalous microturbulent diffusion in the
experiments.9,10,12 A small diffusion term was added to the
density equations, with �=10−3vAL, in order to provide some
numerical smoothing.

The magnetic field, and electron density are shown in
Figs. 1�a� and 1�d� at time t=0. The light ion �proton� den-
sity and the heavy ion density have a linear dependence on x
of the form n0�1+3x /L�, where n0 is either ni0 or nZ0. The
charge of the heavy ions �carbon� is Z=4, and the heavy ion
mass is �Z=12. The normalized ni0=1, and the normalized
nZ0=1/Z. The magnetic field B has only a z component. The
initial magnetic field is of the form B= �1−y / �0.4L��4B0 for
y�0.4L, and B=0 for y	0.4L. These initial conditions are
thought to be consistent with the experiment. The initial ve-
locity of the ion species is zero. In the experiment, the ion
axial velocities from the source are small compared to the
MHD and Hall velocities.

With the finite element method employed here, there is
no need to specify boundary conditions, except for the diffu-
sion terms. For these terms, Neumann �zero normal deriva-
tive� boundary conditions are used, except for the magnetic
field at y=0. There, the magnetic field is held constant in
time, B�x ,0 , t�=1. The small diffusion of the densities has
little effect on the density gradient. It does not cause suffi-
cient relaxation of the density gradient to produce the effects
reported below.

The drift equation �11� appears singular in the limit H
→0. An implicit time integration method for small H is
given in Appendix B.

In the following simulations the normalized Hall param-
eter H=2.

Contour plots of the magnetic field and electron density
are shown in Fig. 1. Shown are �a� the initial magnetic field

and �d� the initial electron density. Figure 1�b� shows the
magnetic field at time t=7.3�A. The front has advanced into
the plasma. The corresponding electron density is shown in
Fig. 1�e�. The electron density has piled up at the front. The
electron density contours are aligned with the magnetic field
front, although they are not aligned behind and ahead of the
front. This implies that in the magnetic front, the Hall veloc-
ity is small. This will be verified below. Figure 1�c� shows
the magnetic field at time t=14.1�A, at which time the front
has almost reached the end boundary. The field has advanced
somewhat further on the left, lower density side. Figure 1�f�
shows ne at the same time. The contours are aligned with the
magnetic front, but there is also a high density blob on the
high initial density side, behind the front.

The time evolution of the magnetic field in the midplane
x=Lx /2 is shown in Fig. 2. The magnetic field as a function
of y is shown at equal time intervals 2�A. The magnetic field
front advances at a uniform rate in a self similar manner at
later time intervals.

The next set of figures depict the case of opposite polar-
ity, in which the sign of B is negative. The plots are of �B�.
The initial B in �a� has the same magnitude as in Fig. 1�a�,
but with opposite sign, and the electron density �d� is the
same as in Fig. 1�d�. The initial densities are the same as in
the previous case.

Figure 3�b� shows the magnetic field at time t=6.9�A.
Here the magnetic front has not advanced as far as in Fig.
1�b�. The corresponding electron density is shown in Fig.
3�e�. The electron density contours are aligned with the mag-
netic field front, although they are not aligned behind and
ahead of the front. The magnetic field in Fig. 3�c� at t
=14.4�A likewise has advanced less than in Fig. 1�c�. The
electron density is aligned with the magnetic front in Fig.
3�f� at the same time. Behind the front is a density blob
similar to Fig. 1�f�, but more aligned with the magnetic field.

The magnetic field as a function of y in the midplane is
shown at equal time intervals in Fig. 4. At early times, the
contours are close together. The front moves backwards
slightly, but then it picks up speed in the positive y direction.

The two cases of positive and negative polarity are com-
pared in Fig. 5, which shows the magnetic front velocity as a
function of time. The front position yB is defined as that
value of y at which �Jx� is a maximum, in the midplane x
=Lx /2, where

Jx =
�B

�y
. �23�

After a certain period of time, the two velocities asymp-
tote to almost the same value, which is approximately the
Alfvén velocity in the front, as will be shown in the follow-
ing.

The Hall velocity can be defined

vH = − HB � � 1

ne
	 � ẑ , �24�

where ẑ is the unit vector in the z direction. Initially vH
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points in the ±y direction, but it rotates into the ±x direction.
The magnetic field gradient causes v to accelerate in the
axial, y direction. In turn this causes the density to pile up, so
the density gradient there is predominantly in the y direction.
Second, the difference velocity, initially in the y direction,
rotates into the x direction with angular frequency � /H.
Having rotated, it relaxes the density gradients in the mag-
netic front. However, the density pileup appears to be the
dominant effect.

It was pointed out in Ref. 14 that in the limit �Z�Z, the
difference velocity vD, in the event of neglecting the inertial
term, may be of the order of vH, which can essentially
change the magnetic field evolution �14� and �15�. Since the
literature has emphasized vH, we will consider vH and vD

separately.
The Alfvén velocity and Hall velocity in the magnetic

FIG. 1. �Color online� �a�, �b�, �c� Magnetic field evolution, for H=2 and positive polarity. Contours of �B� are plotted. �d�, �e�, �f� Electron density ne

evolution at the same times. B and ne are in dimensionless units.

FIG. 2. Magnetic field as a function of axial distance y at equal time inter-
vals, for positive polarity and H=2.
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front are compared in Fig. 6. The plots show two quantities.
We define

vAf = L
 �Jx�
�n
� �25�

using �23�. The average over the front is defined as

�f� =
� fJxdxdy

� Jxdxdy

, �26�

where f is the quantity to be averaged. This weighting is
used because Jx is large only in the magnetic front. The
quantity vAf is a measure of the magnetic pushing force �7�
in the front and is comparable in magnitude to an average
Alfvén velocity in the front. We also define

FIG. 3. �Color online� �a�, �b� �c� Magnetic field evolution, for H=2 and negative polarity. Contours of �B� are plotted. �d�, �e�, �f� Electron density at evolution
at the same times. Contour levels are the same as in Fig. 1.

FIG. 4. Magnetic field as a function of axial distance y at equal time inter-
vals, for negative polarity and H=2.
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vHf = L
�vH ·
�B

B
�� �27�

using �24�, which measures the strength of the Hall term
�15�. In Fig. 6, vAf and vHf are shown as a function of time
for positive and negative polarity. It can be seen that vAf is
comparable in the two cases, and is comparable to the front
velocity shown in Fig. 5. Initially vHf is also comparable to
vAf for both polarities, but it decays toward zero. This quan-
tifies the observations made above that the magnetic field
penetration ceases, as the electron density and the magnetic
field become aligned in the magnetic front. We have chosen
H=2 and the initial density gradients in order to make the
Hall term initially comparable to the Alfvén term. We see
that it has an effect on the magnetic field evolution for only
a certain period of time. After a time delay, the magnetic
front propagates at the same speed for both polarities.

There is also the question of the role of three fluids on
the magnetic field propagation. The difference velocity vD is

relatively small compared to the Alfvén velocity, and tends to
align with the magnetic field, as noted in �22�. Figure 7
shows components of the difference velocity vD in the front
as a function of time for two cases with H=2. The velocity
components are averaged in the magnetic front as in �26�
�vDx�, �vDy�. At later times, ��vDy� � � ��vDx�� for both polari-
ties, and ��vDy� � � �vAf� for both polarities. Hence the drift
velocity tends to align with the magnetic front and becomes
unimportant for magnetic field propagation. However, it has
an effect on the density evolution. Comparing Fig. 1�f� and
Fig. 3�f�, the electron density blob appears to be moving in
different directions along the magnetic field front. From �17�
the electron density evolution depends on v, which is pre-
dominantly in the axial, ŷ direction, and the difference ve-
locity vD, which is predominantly in the x̂ direction and de-
pends on the sign of the magnetic field. We see from Figs. 5
and 7 that in the case presented here, vH is somewhat larger
than vD, and that both of the these velocities tend to align
with the magnetic field.

We have done the simulations with three fluids because
of the experimental conditions, but in fact the results are
qualitatively similar when vD=0. In the two fluid case also,
the Hall effect is important for a only finite time, after which
plasma pushing is dominant.

For smaller H, the tendency for the Hall effect to be
suppressed is even more dominant. This is illustrated in Fig.
8, which shows the magnetic front velocity as a function of
time for both polarities, for H=1. The agreement between
the front velocity for the two polarities is even closer than in
Fig. 5.

IV. CONCLUSION

In this paper we have applied three fluid plasma evolu-
tion equations to the problem of magnetic field propagation
in a planar plasma opening switch. We find that there is a
tendency for the Hall effect to be suppressed, for Hall pa-
rameter H�1. Initially the Hall velocity either opposes or
adds to the Alfvén velocity, depending on the polarity of the
magnetic field, allowing fast magnetic field penetration. Be-

FIG. 5. Magnetic front velocity as a function of time for the two polarities
with H=2. After an initial transient, both cases asymptote to almost the
same front velocity.

FIG. 6. Alfvén and Hall velocity in the front as a function of time for the
two polarities with H=2. Initially the Alfvén and Hall velocities are com-
parable, but the Hall velocity tends to zero. The front velocity is close to the
Alfvén velocity.

FIG. 7. Components of difference velocity vD in the front as a function of
time for the two polarities with H=2. At later times, �vDy � � �vDx� for both
polarities, and �vDy � � �vA� for both polarities.
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cause the density is compressed by the fluid velocity, which
is independent of the Hall velocity, the electron density gra-
dient tends to align with the magnetic field gradient, effec-
tively turning off the Hall effect. Thereafter the plasma push-
ing is the dominant process. The calculation of the time
period in which the magnetic field penetration is important,
before it ceases due to the pushing, will be calculated in a
future study. This paper shows that the observed magnetic
field penetration is not always easily explained even by the
Hall field. Specular reflection of the light-ion species, ob-
served in the experiment9,10 might affect the plasma penetra-
tion. To some extent, this reflection may be modeled by the
relative velocity vD of the two species, but the fluid model
cannot account for partial reflection within the light-ion spe-
cies. There could be additional effects which could alter the
competition between plasma pushing and Hall-field induced
penetration.
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APPENDIX A: SCALING OF THE EQUATIONS

In cgs units, the ion momentum equation is, after elimi-
nating the electric field with the electron momentum equa-
tion,

�vi

�t
+ vi · �vi =

e

Mic
�vi − ve� � B .

Normalize t̃= t /�A, where �A=L /vA, and L is the length. The
Alfvén velocity is B0�4
�0n0Mi�−1/2, where B0 is a typical
value of magnetic field strength, Mi is the light ion mass, and
n0 is a typical ion density. Lengths are normalized to L, so

that �̃=L�. The magnetic field is normalized to B0; B̃
=B0

−1B. The densities na are normalized to n0, with nã

=n0
−1na. The velocities are normalized to vA, with ṽa=vA

−1va.

The pressure is normalized to p̃=4
�0p /B0
2. Finally

H =
vAMic

eB0L
=

cMi
1/2

L�4
n0�1/2e
.

In dimensionless units,

� ṽi

� t̃
+ ṽi · �̃ṽi =

1

H
�ṽi − ṽe� � B̃ −

�̃p̃i

ñi

.

The electron velocity can be expressed in terms of the cur-
rent, as

neve = nivi + ZnZvZ −
c

4
�0e
� � B .

Using the normalizations gives

1

H
�nẽṽe − ni

˜ ṽi − ZnZ̃ṽZ� = �̃ � B̃ .

The dimensionless induction equation is

�B̃

� t̃
= �̃ � �ṽe � B̃� .

APPENDIX B: IMPLICIT METHOD FOR DRIFT

The drift equation �11� appears singular in the limit H
→0. This suggests an implicit numerical approach. Dis-
cretizing in time, �11� becomes

vD
n+1 − dt

�

H
vD

n+1 �
B

B
= vD

n + dtF ,

where vD
n+1 refers to time level n+1, dt is the time step, and

all other quantities are assumed at time level n. This can be
inverted in the form

vD
n+1 =

H

H2 + dt2�2�H�vD
n + dtF� + dt��vD

n + dtF� �
B

B
	 .

If H=0, the solution is vD=0.
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