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Spectroscopic methods recently developed for the measurements of electric fields, magnetic fields, and
plasma properties in various pulsed-power systems are described. The methods utilize spectroscopy of
visible-UV and X-ray emission-lines and of laser radiation. They allow for non-perturbing measurements
with relatively high spectral, temporal, and spatial resolutions. Spatial resolution along the line of sight is
obtained by locally doping the plasma with various species whose emission is then utilized. A few methods
developed for doping solid and gaseous materials are described. Results for an ion diode, nanosecond and
microsecond Plasma Switches, and a pinch system are presented.
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1. Introduction

Spectroscopic methods are highly useful in achiev-
ing reliability and accuracy in investigations of numer-
ous complicated pulsed-power systems. These meth-
ods can be applicable to a wide variety of devices, in-
cluding electron diodes (1), ion diodes (2), high power
magnetrons (3), plasma opening switches (4), and various
plasma implosion devices such as Z-pinches (5). Tech-
niques recently developed allow for determining the elec-
tric field distribution from Stark shift (6) (7) and broad-
ening (8)∼(10), the magnetic field distribution from Zee-
man splitting (11)∼(15), the ion velocity distribution from
Doppler broadenings and shifts (16)∼(18), the electron
temperature from line-intensity ratios (19), the electron
density from the particle ionization times (17) (18), and the
particle density distributions from the absolute inten-
sities of various spectral lines (20). Laser spectroscopy
allows for particularly high-spatial-resolution measure-
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ments of ion velocities, electron density and temper-
ature, and electric fields (21). For analyzing the line
intensities in such non-equilibrium plasma we use de-
tailed time-dependent collisional-radiative calculations
(22)∼(25). Measurements with high-spatial-resolution in
three dimensions are crucial for obtaining unambiguous
results. Such measurements are obtained by locally dop-
ing the plasma with various species and observing the
characteristic emission of those species.

2. Anode-plasma properties in an ion
diode

Here, the properties of the anode plasma within tens
of µm from the anode surface were determined using
laser absorption and laser-induced-fluorescence (21). To
this end, the anode surface was doped with magnesium
that was released from the surface in the flashover pro-
cess that produced the anode plasma. The laser beam
was passed through the plasma, and the spectral profile
of the laser light transmitted through the plasma was
observed. An example of such a profile for the Mg ii

3s − 3p 2P3/2 transition is shown in Figure 1. The
true line spectral profile, deconvolved from the measured
spectral profile of the transmitted laser light using the
spectral instrumental response, was used to obtain the
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absorption coefficient α(λ). Gaussian curves were found
to fit most of the data satisfactorily, giving the total ab-
sorption coefficients α(λ0) at the line centers and the
absorption line full widths (σFWHM ) for the different
species. In order to determine the density Nl of the
lower level of the transition, we use the formula

Nl =
α(λ0) σFWHM

p0fluλ2
0

+ Nu
gl

gu
,

where σFWHM is in Å, p0 = 8.3 × 10−21cm2/Å for a
Gaussian and 5.65×10−21cm2/Å for a Lorentzian, flu is
the absorption oscillator strength, λ0 is the wavelength
in Å at the line center, densities are in cm−3, and α(λ0)
is in cm−1. The measured densities as a function of dis-
tance from the anode surface of the Mg ii ground (3s)
and excited (3p 2P3/2) states are shown in Figure 2. The
data point closest to the surface is at x = 15 µm, since it
represents an average over the 30-µm-wide region near
the surface. It is obtained from the absorption of the
laser light scattered on the anode surface.

Fig. 1. A typical spectral profile of the laser light
transmitted through the plasma (solid curve). The
laser light wave length is λ ≈ 2795.5 Å, the center
of the Mg ii 3s − 3p 2P3/2 transition. The curves
indicate the trend. The dip in the solid curve is
due to resonant absorption of the laser light in the
plasma (see text).

Using the collisional-radiative calculations for a wide
range of electron temperatures and densities, we found
that most of the Mg ii ions lie in the 3s and 3p levels.
The density gradients shown in Figure 2, reveal, there-
fore, a large gradient in the Mg ii total density near the
anode surface.

It is instructive to show the limitation of the use of
spontaneous emission for measurements at such small
distances from the surface. In Figure 2(b) the Mg ii 3p
2P3/2 level density is shown together with the observed
emission intensity of the 3p 2P3/2 – 3s transition as a
function of distance from the surface. It is seen that
the emission intensity observed decreases near the sur-
face, thus failing to show the density rise there. Using

ray-tracing calculations (26), we verified that this resulted
from the effects of self-absorption, limited spatial resolu-
tion, and low light collection efficiency near the surface
that affect the spontaneous-emission measurements.

Fig. 2. (a) The Mg ii ground-state density as a
function of the distance x from the anode surface
obtained from the laser absorption at 2795.5 Å for
t = 55 ns. The spatial resolution near the an-
ode surface is ≈ 30µm. The curve indicates the
trend. The data reveal a large density gradient of
the Mg ii ground state near the anode surface. (b)
Similar to (a) for the density of the Mg ii excited
state 3p 2P3/2 obtained from the laser absorption

at 2798 Å (solid curve), and the intensity of the
3p 2P3/2 − 3s emission in arbitrary units (dashed
curve). The curves indicate the trends.

3. Doping techniques

In order to obtain spatial resolution along the line of
sight the plasma is locally doped with various species
whose emission is used for the various spectroscopic mea-
surements. A variety of doping techniques have been
developed. In all the doping techniques it is verified
that the doped-material density is significantly less than
the background plasma density to avoid perturbation of
the plasma. For doping with solid material one needs
to ablate material initially deposited on a solid surface.
In the diode experiment, the epoxy used for the anode
was mixed with a powder of the desired-species com-
pound (21). By doping only in limited portions of the di-
electric anode, local measurements in three dimensions
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could be obtained.
In the nanosecond POS experiment (13), a pulsed laser

was used to evaporate material, initially deposited on
the anode surface, into the POS region. The laser pulse
was applied at an appropriate time prior to the oper-
ation of the POS, producing a conical column between
the POS electrodes with a diameter that increased from
≈ 0.2 cm near the anode to ≈ 1 cm in the middle of the
POS gap (1.25 cm from the anode). The axial location
of the doped column was varied by moving the laser spot
on the anode strip.

In microsecond POS experiment (27), a secondary sur-
face discharge between two electrodes, placed on epoxy
resin that contains the desired dopant, was used to inject
various species into the switch plasma. This flashover
plate was positioned outside the highly transparent cath-
ode and formed a column of plasma that expanded at
typical velocities of (2− 5)× 106 cm/s, and the time de-
lay was adjusted accordingly. The width of this column
was found to increase from 1.2 cm near the cathode to
3-4 cm near the anode.

In order to dope gaseous materials, such as helium and
other noble gases, another method using injection of a
gas beam into the plasma was developed (28). This sys-
tem is currently being used to study the operation of the
microsecond POS. The doping arrangement consists of a
fast gas valve and a 0.8-mm-diameter nozzle. The valve
is driven by a 2 µF, 6 kV capacitor, discharged through a
low inductance strip-line. A skimmer is placed approx-
imately 5 cm from the nozzle to further collimate the
gas beam before it enters the POS region through the
highly transparent cathode. Skimmers with apertures
in the range 0.3-0.7-cm-in-diameter are used giving gas
beams with FWHM that could be varied in the experi-
ments from 0.7 to 1.6 cm.

4. Electric field measurements

Our E-field diagnostic method is based on LIF com-
bined with line-shape analysis of dipole-forbidden tran-
sitions (10) (29)∼(31). The diagnostics makes use of the Li i
2p-4d (dipole-allowed) and the 2p-4f (dipole-forbidden)
transitions. The experiments were performed in ns-
POS configuration (13). The ns-POS, shown in Figure
3, is coaxial. It is driven by a 4 kJ, 600 kV, 1.5
Ω LC-water-line pulse generator that produces a 300
kV pulse with quarter period of 100 ns. The plasma
(ne = 2 × 1014 cm−3) is produced by flashboard and
is injected into the POS region through the anode. The
emitted light is imaged by lenses onto the spectrometers.

The lithium doping beam is produced by the laser
evaporation method. The dye laser is tuned to excite
the LiI 4p level from the ground state (see Figure 4).
Collisional excitations and de-excitations by the plasma
electrons lead to a rise in the populations of the 4d and
4f levels (and other neighboring levels) as shown by the
time-dependent collisional-radiative calculations.

The rise of the 3d level population, for example, al-
lows for measuring reliably the 2p–3d profile, which is
used to determine the lithium velocity distribution, see
below. Furthermore, because of the small energy sepa-

Fig. 3. Arrangement of the ns-POS and its diag-
nostic system.

ration between the 4d and 4f levels, the 4d–4f collisional
excitation and de-excitation, for the plasma parameters
used in this experiment, dominate other processes that
may affect the 4d and 4f level populations. Collisional-
radiative calculations thus show that the populations of
these two levels (divided by the respective degeneracies)
are equal to within 4%, which is important for proper
interpretation of the relative line intensities. Since the
forbidden line amplitude strongly depends on the elec-
tric field strength (29), the forbidden line intensity is a re-
liable measure of the electric fields in the plasma. How-
ever, the determination of the forbidden-line intensity
requires correct line-shape calculations for both the al-
lowed and forbidden transitions.

Fig. 4. A diagram of the laser-driven excitation of
the Li i levels.

Here we describe measurements during the applica-
tion of the generator current. We use the forbidden
to allowed line ratios for determining the E-field in the
plasma in the vicinity of the cathode surface (within 1
mm) during the current conduction. Figure 5 presents
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the evolution of the electric field determined from the
line ratios, where the current driven through the plasma
starts at t = 0 ns. Also shown in Figure 5 are the up-
stream and downstream currents. It is seen in Figure 5
that the E-field prior to the rise of the generator current
is ≈ 6 kV/cm, which is consistent with the 4d–4f mixing
that results from the microfields in the 2 × 1014 cm−3

density flashboard plasma. During the current conduc-
tion the E-field rises and reaches its peak value, with
an average of 12 kV/cm, at ≈ 55 ns, when the entire
generator current is still conducted by the plasma (very
small fraction of the current flows to the load).

Fig. 5. E-field evolution during the current con-
duction. Here, t = 0 is the beginning of the gen-
erator current pulse. Also shown is the upstream
and downstream currents(the current to the load)
measured by Rogowsky coils.

The reason for the rise of the E-field requires further
investigation. The field could rise due to a local rise in
the plasma density, for example, due to plasma pushing
by the magnetic field upstream of the measurement po-
sition. It can also be explained by a rise of electric fields
in the plasma due to the current conduction. If this field
is associated with the Hall potential in the plasma, it can
then be estimated from the term B2/8πnee, where B is
the value of the self magnetic field at the location of the
measurement and ne is the local electron density. Using
the typical values in our experiment for B (1 Tesla) and
for ne (2×1014 cm−3), one obtains a value of 12 kV. For
such a potential to produce E ≈ 6 kV/cm, it must drop
over a couple of cm (which should then be the current-
channel width).

5. Magnetic field measurements using
Zeeman splitting

The experiments were performed in microsecond pla-
nar POS configuration (27). It consists of two planar,
14-cm-wide electrodes separated by a 2.5-cm gap. The
current generator delivers a current of 200 kA during
400 ns, to be driven through a plasma prefilling the
gap between two planar electrodes. The plasma den-
sity in the experiments is ≥ 1014 cm−3. The basic di-
agnostic tool employed in this research is visible and

UV spectroscopy. The evolution of the magnetic field is
determined from the Zeeman splitting of the He I spec-
tral line. The plasma was doped with helium and the
3d(1D)–2p(1P 0) transition was observed. By observing
emission from a neutral atom the Doppler broadening
was minimized (unlike ions that are accelerated under
the magnetic field gradient). Neutral helium has the
unique feature that due to its slow ionization it can be
used for this measurement throughout the entire exper-
iment. Stark broadening is negligible for the electron
density of 5 × 1014 cm−3 present in this experimental
setup and the line width of the observed 6678 Å spec-
tral line without the Zeeman splitting is thus dominated
by the instrumental broadening.

Fig. 6. Two-dimensional maps of the magnetic
field (in Tesla) at four different times during the
POS operation.

Figure 6 shows 2D maps of the magnetic field at
t = 150, 200, 250, and 300 ns. The front of the mag-
netic field propagates at a velocity of 5×107 cm/s, while
the value of B = 0.6 T propagates at a lower velocity
of (3.3 ± 0.3) × 107 cm/s. At t = 150 and 200 ns the
front of the magnetic field (B ≤ 4 kG) is seen to prop-
agate nearly in a 1-D form. At later times, however,
the magnetic field structure for B > 4 kG resembles a
wedge shape. In this figure at x = 1 cm, the width of the
current-carrying region is seen to be 2–3 cm throughout
the pulse, except near the anode at t > 240 ns, where
it is even wider. At t = 300 ns a region with a low
current density is formed at the generator-side edge of
the plasma (near the cathode this region extends axially
over most of the plasma). The reason for the lack of
current flow at this position is probably related to the
drop of the electron density in this region.

Comparison between the measured magnetic field dis-
tribution and the ion velocities, together with the anal-
ysis of the evolution of the electron density, is being
presently used for improving our understanding of the
magnetic field penetration into the plasma.
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6. Ion velocity measurements in a Z-pinch
plasma

Here we report on a time-resolved determination of
the ion kinetic energy in a stagnating plasma in a gas-
puff neon Z-pinch experiment. Measurements of the ki-
netic energy, performed in different experiments for dif-
ferent times throughout the entire X-ray emission pe-
riod, allow for tracking the history of the ion kinetic
energy. For these measurements we selected lines (Lyα

satellites) that, using radiation transport calculations,
were verified to be free of opacity effects and, using
Stark broadening calculations, were found to be insignif-
icantly affected by Stark broadening. Also, we developed
spectroscopic systems that provide rather high spectral
resolution (λ/∆λ ≈ 6700), which is evidently essential
for such measurements. Furthermore, the spectroscopic
systems employed allow for a simultaneous imaging the
pinch column along its z axis, which provided informa-
tion that is highly important for the data analysis. The
data demonstrate that the ions lose most of their kinetic
energy, reaching an energy comparable to the electron
temperature, during the X-ray emission period. The gas
in the present experiments is injected by two nozzles on
the cathode side, where one is annular with a diame-
ter of 38 mm delivering a gas load of ≈ 18 µg/cm, and
the other is on axis, delivering ≈ 4 µg/cm. The implo-
sion time is ≈ 750 ns, and the current at stagnation is
≈ 320 kA.

The main features of the spectroscopic systems de-
veloped for this study are the high spectral resolution
(λ/∆λ ≈ 6700) and the spatial imaging of the spectra
with a resolution down to 0.1 mm. Single-gated MCP
detectors followed by CCD cameras, provide 2-ns tem-
poral resolution throughout the 20-ns X-ray emission pe-
riod.

The crystal used for this study is a spherically
curved KAP operated at the second order. Using
double-grating measurements it was verified that the
spectrograph-system spectral resolution is only lim-
ited by the crystal rocking curve. Employing a high-
dispersion for the spectrograph (R = 612 mm) allowed
for resolving the crystal rocking curve at the detec-
tor plane, giving a resolving power ≈ 6700 (i.e., the
Lorentzian spectral response is 1.8 mÅ wide) and pro-
viding a spectral window of 60–100 mÅ. We also note
that possible instrumental broadening due to the pinch
size was shown to be negligible in the present measure-
ments.

In order to measure the Doppler profiles in the stagna-
tion phase, the crystal was designed to focus on three Ne
Lyα satellites (12.310 – 12.355 Å). In addition, a pinhole-
photography system was used to provide filtered 2-D
images of the pinch column at four gated times (≥ 1 ns
delay between each gate). The other diagnostic tools
included X-ray diodes (XRD) and a system of Ross fil-
ters (32), equipped with fast PIN-diode detectors.

The satellites observed in this study are (33) (34):
2p2 1D2 − 1s2p 1P1, 2s2p 3P0,1,2 − 1s2s 3S1, and
2p2 3P0,1,2 − 1s2p 3P0,1,2 where one is a singlet transi-

tion (12.355 Å) and the other two are triplet transitions
with three components (between 12.305 to 12.310 Å)
and six components (between 12.321 to 12.326 Å), re-
spectively. Due to its relatively simpler spectral profile,
the satellite most useful for the ion-velocity measure-
ments is the singlet one. For our plasma parameters, the
natural (Lorentzian) broadening of this line is mainly de-
termined by the rates of the upper-level autoionization
(3.7×1014 s−1) and the radiative-decay (1.2×1013 s−1),
giving a natural width of 3.3 mÅ. This width, together
with the instrumental spectral response (1.8 mÅ), de-
termine the spectral resolution for these observations.

Employing the z-imaging described above for these
Lyα satellites revealed that they are first emitted from
the region z = 9−12 mm, where z = 0 and z = 14.4 mm
are the cathode and anode positions, respectively. We
now discuss the measurements for this region.

Fig. 7. Satellite spectrum for z = 10.5 mm, inte-
grated over ∆z = 1.6 mm, for t = −3 ns.

Figure 7 shows an example of the satellite structure
observed at a relatively early time of the X-ray emission
period, t = −3 ns, where t = 0 denotes the peak time of
the XRD detector that collects > 800 eV photons from
the entire pinch column. The resulting satellite profiles
at z = 10.5 mm, and integrated over ∆z = 1.6 mm, are
shown in Figure 7. In order to obtain the Doppler contri-
bution to the line width we assume a Gaussian shape for
this contribution, where the other contributions are due
to the Lorentzian natural broadening and instrumental
response.

We thus fit Voigt profiles to each of the satellite com-
ponents, where the Gaussian part is a parameter deter-
mined by the best fit. For the early time of the stagna-
tion, the data give that the width (FWHM) of the Gaus-
sian contribution to the profiles of the singlet satellite is
between 8 and 11 mÅ(significantly larger than the nat-
ural width and the instrumental response width). The
widths observed can only be associated with the Doppler
effect, resulting from the ion thermal and hydrodynamic
velocities. Indeed, assuming that each component of the
other triplet satellites observed has the same width as
the singlet satellite (consistent with Doppler-dominated
widths), it was possible to reconstruct reasonably well
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the satellite structure of the triplet satellites, as shown
in Figure 7.

For later times the line emission was seen from the z
region between z = 6 and 14.4 mm. Here, we only dis-
cuss the late emission from the region z = 9 − 12 mm,
thus only addressing the time dependence of the ion ki-
netic energies at this region. An example of a satel-
lite structure observed later in the stagnation is shown
in Figure 8. It is seen that the Gaussian FWHM at
t = 6 ns is 2.5 ± 0.6 mÅ. The Doppler contribution
in this example corresponds to an ion temperature of
140± 75 eV. This is perhaps the lowest ion temperature
expected to be detected since very plausibly the ions
cannot be much colder than the electrons. Indeed, at
this period of the stagnation the electron temperature is
< 200 eV (which will be discussed elsewhere), demon-
strating that the mean ion kinetic energy is tracked in
our experiments down to Te.

The measurements give the total kinetic energy of the
H-like ions throughout the Lyα-emission period (t ≈ −4
to t ≈ +6 ns relative to the XRD-signal peak).

Fig. 8. Satellite spectrum observed at z = 10 mm
and integrated over ∆z = 0.2 mm, for t = 6 ns.
The best-fit-Gaussian FWHM is 2.5 ± 0.6 mÅ.

7. Conclusions

Recent novel developments in spectroscopic diagnos-
tics of pulsed-power systems allows a reasonable progress
in obtaining very high-resolution measurements of the
electric fields, magnetic fields, and plasma properties
in a variety of pulsed-power systems utilizing a line
and continuum emission from the plasma in the visi-
ble to the X-ray regions. Using doping techniques mea-
surements spatially resolved in 3D are achieved. The
use of laser absorption, laser-induced-fluorescence, and
laser-enhanced emission of forbidden lines further im-
prove the spatial resolutions and allow for the detec-
tion of relatively low electric field. Examples shown
in this report are the determination of the properties
of plasmas near surfaces in electrical discharges using
laser spectroscopy, the electric fields in plasma using
forbidden-line transitions, the magnetic field distribu-
tions from Zeeman splitting, the ion flow from the line-

Doppler shifts, and electron temperature from line inten-
sities. All information is obtained as a function of time
and space. The measurements utilize various atomic-
physics modeling, including collisional-radiative, line-
broadening, and radiation-transport calculations. We
believe that such or similar diagnostics can be applied
beneficially to numerous electrical discharges or pulsed-
power-transmission systems with various properties of
the plasmas and of the fields.
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