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We investigate the stagnation phase of a three-dimensional (3D), magnetohydrodynamic simulation

of a compact, tungsten wire-array Z pinch, under the simplifying assumption of negligible radiative

loss. In particular, we address the ability of one-dimensional (1D) analytic theory to describe the

time evolution of spatially averaged plasma properties from 3D simulation. The complex fluid

flows exhibited in the stagnated plasma are beyond the scope of 1D theory and result in centrifugal

force as well as enhanced thermal transport. Despite these complications, a 1D homogeneous (i.e.,

shockless) stagnation solution can capture the increase of on-axis density and pressure during the

initial formation of stagnated plasma. Later, when the stagnated plasma expands outward into the

imploding plasma, a 1D shock solution describes the decrease of on-axis density and pressure, as

well as the growth of the shock accretion region. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891844]

I. INTRODUCTION

The wire-array Z pinch is a powerful radiation source

that operates on a simple principle: current is driven through a

cylindrical annulus of metallic wires in the axial direction (i.e.

the z direction), vaporizing the wires while also generating an

azimuthal magnetic field Bh. The resulting radially inward

j�B force accelerates the plasma towards axis, where it stag-

nates, converting its implosion kinetic energy into thermal

energy, which is then radiated away (for a visual aid to energy

flow in a Z pinch, see the Appendix). Considerable theoretical

effort has been put into understanding the stagnation phase,

with much of the work devoted to explaining the experimental

observation that the radiated energy exceeds the zero-

dimensional (0D) estimate of kinetic energy (see Ref. 1 and

references therein), possibly through enhanced resistivity,1,2

ion viscous heating of magnetohydrodynamic (MHD) instabil-

ities,3 buoyant magnetic bubbles,4,5 and continued j�B work

due to multi-dimensional effects.6–8

This work addresses an ostensibly simpler question:

How does the implosion kinetic energy convert to thermal

energy? Experiments9,10 suggest that this process is responsi-

ble for a significant fraction, if not all, of the “main” radiated

power pulse (i.e., the peak of the total and K-shell radiation

power, and most of the K-shell radiation yield), at least for

wire arrays of sufficiently large diameter.11 Theoretical mod-

els describing this process have existed since the 1950s, and

are all either 0D approximating one-dimensional (1D)

flow12–14 or 1D.15–21

While such models are excellent for developing physical

intuition, the applicability to a wire-array Z pinch is uncer-

tain, owing to its three-dimensional (3D) nature, which is

well-documented experimentally.22–26 At early time, rather

than vaporizing into a plasma shell, the wires develop a het-

erogeneous core-corona structure and undergo a prolonged

ablation phase during which cores cook material off their

surface, which is then accelerated towards axis by the j�B

force. The ablation phase, coupled with an instability on the

cores that modulates the ablation rate axially (see Ref. 27,

and references therein), results in a 3D imploding and stag-

nating plasma bearing little resemblance to a cylindrical

shell or column. Indeed, recent experimental data28 suggest

significant residual motion in the “stagnated” plasma.

Hence, the relevance of 1D models to 3D wire-array

stagnation might seem dubious, due to the complicated flow

structures that are only possible in 3D. Nonetheless, scaling

laws for the K-shell yields developed using 1D radiation-

magnetohydrodynamic (RMHD) simulations (see Refs.

29–32, and references therein) have been consistently suc-

cessful in predicting the radiative yields and guiding the load

design.33 The same can be said about predicting K-shell

yields from, and guiding the design of, Ne and Ar gas-puff Z

pinches,34–36 as well as prediction of thermal neutron yields

from deuterium gas-puff Z-pinch loads.37–39 Very recently,

Maron et al.40 found good agreement between a 1D analyti-

cal shock model and experimental data obtained both in

�0.5 MA gas-puff implosions observed at the Weizmann

Institute of Science and in �20 MA wire-array implosions at

Sandia National Laboratories.

Intuitively, one can expect predictions based on the 1D

approach to be applicable to some globally averaged (i.e.,

averaged over vertical coordinate and azimuthal angle) quan-

tities characterizing the radiative or neutron yield or power

only if a large part of the stagnated plasma participates in

their generation. This is not always the case—sometimes the

relevant radiative output comes from a string of bright spots

(which are hot, dense, or both), as, for example, copper K-

shell emission in recent wire-array experiments on Z.41 Buta)Electronic address: epyu@sandia.gov
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in many cases, Z-pinch performance is not determined by the

small-scale structures, which typically means that a suffi-

ciently large fraction of stagnated mass participates in the

relevant emission, as in most of the above-referenced situa-

tions to which the 1D-based scalings and models have been

successfully applied. Then, the global averaging makes

sense. This conclusion refers not only to Z pinches but to a

wider class of implosion of interest for inertial confinement

fusion and high-energy-density physics. As an example, we

quote low-adiabat implosions of cryogenic DT capsules on

the Omega laser. Even though these implosions are strongly

affected by hydrodynamic instabilities, remarkable shot-to-

shot reproducibility of their neutron yields and other

observed parameters has been noticed,42 suggesting some

kind of quasi-1D motion.

One should keep in mind, however, that 3D flow is

much more complicated than 1D flow, a difference which

inevitably affects the globally averaged quantities. For exam-

ple, local vorticity generated in 3D, which can develop into

turbulence, on the average represents an energy sink not

present in the 1D description. Shock convergence does not

occur along the pinch symmetry axis, as in 1D, but rather in

various areas of the stagnated plasma volume, not simultane-

ously, which means that shock convergence and divergence

phases coexist in time, both contributing to the global aver-

aging. All this implies that application of the 1D approxima-

tion to the averaged quantities is a non-trivial issue that

deserves a special study.

In this work, we consider the applicability of two self-

similar, 1D stagnation models to a 3D wire-array simulation.

The two models describe a shock and shockless stagnation,

respectively, thus covering a broad range of possible scenar-

ios. These models can be helpful in understanding local

plasma behavior, but we are more interested in their ability

to describe globally averaged plasma properties. In this case,

the analytic solutions give us an overarching understanding

of the complex fluid motions seen in 3D, and how this ki-

netic energy converts to internal energy. On a more practical

level, the solutions allow us to predict how certain plasma

parameters, such as pressure and density, evolve with time.

An important related question is if the 1D solutions apply,

“How does the 3D fluid motion manifest itself in a 1D

description?”

In order to simplify this complicated problem, we focus

on a simulation run (essentially) without radiation during the

stagnation phase. While this simplification is of course unre-

alistic, it will enable us to better distinguish between the ana-

lytic models, as well as provide a simpler background

against which to test our ideas.

Although this work focuses on 3D stagnation of wire

arrays, our results may be relevant to gas puffs43–49 and me-

tallic liners,50,51 which also develop 3D structures during the

implosion phase. Furthermore, recent simulations52 highlight

the important role that 3D hydrodynamics may play during

stagnation of inertial confinement fusion capsules.

The paper is structured as follows. In Sec. II, we analyze

our 3D simulation results, providing a qualitative description

of flows observed in the stagnating plasma and their effect

on plasma properties. In Sec. III, we compare the 3D

simulation with its 1D “equivalent.” In Sec. IV, we briefly

review analytical solutions describing shock and shockless

stagnation (the details are given in the Supplementary mate-

rial53). In Sec. V and VI, we compare the analytical predic-

tions with the numerical results. In Sec. VII, we make a brief

comment on the role of magnetic field at stagnation, fol-

lowed by a summary in Sec. VIII.

II. 3D SIMULATION OF WIRE ARRAY STAGNATION

A. Simulation description

In this work, we focus on a compact (1 cm radius),

1.15 mg, tungsten wire array on the Z pulsed power genera-

tor. We use the 3D MHD code ALEGRA-HEDP,55 run with

thermal and radiative transport (single group implicit Monte

Carlo) and allowing for separate ion and electron tempera-

tures. ALEGRA uses high-fidelity equation of state tables

and electrical conductivity models,56 and employs an artifi-

cial viscosity to capture shocks (physical ion viscosity is not

included). The simulation is run with a Thevenin equivalent

circuit representation of Z (see Ref. 23, and references

therein), driven with an experimentally determined voltage

drive. We only model 7 mm of the full 10 mm axial length of

the wire array, for the sake of keeping the number of ele-

ments tractable (�1.7 � 106). Even so, the simulation is

somewhat coarsely resolved, with dr� 20 lm near axis

(graded to 75 lm at r¼ 2 mm), dz� 60 lm, and N/ ¼ 120

cells in the azimuthal direction.

Rather than simulate the discrete wires,7,8,57 we use a

mass inflow boundary condition, motivated and described in

Refs. 58 and 59, to model the ablation phase. The idea takes

advantage of the fact that the wires play a relatively passive

role during the mass ablation phase, acting as stationary

mass sources of plasma. In this model, on the cylindrical

mass injection surface (located at the wire array’s initial ra-

dius R0¼ 1 cm) each computational cell continuously leaks

out mass, which is then rapidly accelerated radially inwards

by the j�B force. When an amount of mass equal to the

wire array mass has been injected onto the mesh, the mass

injection ceases.

We allow axial variation in the mass injection rate, to

mimic the aforementioned axial instability on the wires. We

also allow blocks of Nc azimuthally adjacent cells to share

the same injection rate, to account for the experimental ob-

servation that the mass ablation rate may be azimuthally cor-

related over several wires.25,60 In this simulation, we assume

Nc¼ 2 (i.e., in the notation of Ref. 58, the correlation param-

eter C¼ 1.7%), which produced good agreement with exper-

imental backlighting images and radiated power in Ref. 58.

Note that in this work, we only consider the limit where there

are sufficient wires that the plasma coronas from adjacent

wires touch azimuthally, so that there are no azimuthal gaps

on the mass injection surface.

Figure 1 presents results of the simulation near the be-

ginning of stagnation, illustrating the precursor mass accu-

mulating on axis, ablated plasma, and the imploding plasma

sheath, which sweeps up the ablated plasma. As discussed in

Ref. 58, the plasma forms a complicated 3D trailing mass

structure behind the imploding bubbles. Unlike a 2D (r,z)
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simulation, in which current flows on the front of the bub-

bles, in 3D, the trailing mass can support considerable cur-

rent through azimuthal current paths, as seen in Fig. 1(c),

thus leading to reduced growth of magneto Rayleigh-Taylor

instabilities (see Ref. 61, and references therein). Hence,

while the imploding plasma is highly inhomogeneous, the

lack of gross instabilities enhances the chances of 1D theory

being able to describe, in an averaged sense, the 3D plasma

stagnation. Finally, we introduce a major simplification by

reducing the plasma opacity by a factor of 10 000 near the

start of stagnation (t¼�2.4 ns, see Fig. 1). Thus, while the

plasma implosion profile is accurately modeled, we effec-

tively turn off radiation losses during the stagnation phase,

the global energy balance of which is shown in Fig. 2. Note

that all 3D simulation results in the paper refer to the same
simulation, namely that of a 1.15 mg, 1 cm radius, tungsten

wire array.

B. Qualitative description of 3D stagnation

We begin by illustrating the global behavior of the 3D

simulation in Figs. 3 and 4, where we plot radial profiles of

density hqi, mass-averaged radial velocity hvriq, pressure

hpi, radial ram pressure hprami � hqihvri2q, magnetic pressure

hpBi � hBi2=2l0, and mass-averaged ion and electron tem-

perature hTiiq and hTeiq. The brackets denote an axial and

azimuthal average over a cylindrical surface of constant ra-

dius: h� � �i �
Ð
���dSÐ
dS

. Brackets subscripted with q denotes a

mass-averaged quantity: h� � �iq �
Ð
���qdSÐ
qdS

. For t � 0 ns, the

plasma pressure and density build up on axis as the kinetic

energy dissipates. After this time, as seen in Fig. 4, the on-

axis pressure and density fall, although the kinetic energy

continues to dissipate (see Fig. 2). During this phase of stag-

nation, the high-pressure plasma core expands outward, col-

liding into the imploding plasma, as confirmed by the hvriq
profiles.

While the profiles in Figs. 3 and 4 provide a global

description of the plasma, to better understand the 3D behav-

ior, we examine plasma flow in a fixed z plane, as shown in

Figs. 1(d) and 1(h) and in greater detail in Fig. 5. Although

this visualization does not discern axial flows, axial kinetic

energy remains a relatively small fraction of the total kinetic

FIG. 1. Example results from the 3D simulation, illustrating density

qðkg=m3Þ and current density jjjðA=m2Þ at two times (t¼ 0 corresponds to

maximum compression on axis). In (a) and (e), we show a surface of con-

stant density (1 kg/m3). The plane shown in (b), (c), (f), and (g) cuts through

the center of the simulation domain. The black horizontal line in (b) and (f)

is the z¼ 3.5 mm midplane, visualized in (d) and (h).

FIG. 2. (a) Kinetic, internal, Joule, and magnetic energy, as well as J�B

work and total current I, from the 3D simulation. We also show the azi-

muthal (EKIN-theta) and axial (EKIN-z) components of kinetic energy.

Dashed lines represent kinetic and internal energy from the equivalent 1D

simuation, discussed in Sec. III. The initial 1D kinetic energy does not

include axial and azimuthal components, and is, therefore, smaller than its

3D counterpart. (b) Corresponding powers.
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energy throughout most of stagnation (see Fig. 2). In Fig. 5,

the red-tipped arrows illustrate velocity vectors tangent to

the visualization plane, and the purple contour represents

p¼ 1e12 J/m3, characteristic of “high” pressures achieved in

the stagnated plasma.

At t¼�1.2 ns, the imploding plasma is starting to crush

the precursor. Unlike an azimuthally symmetric 1D case, the

plasma streams have collided obliquely and off axis (see pur-

ple contours), thus partially dissipating kinetic energy while

also continuing to implode inward. By t¼�1 ns, a hot core

has assembled on axis. The core will seek to expand

outward, due to its high pressure, but it must overcome two

effects: the confining magnetic field and the ram pressure

hprami of the imploding plasma, which is the force one would

feel, for instance, when standing in front of a firehose.

Looking at Fig. 3, the magnetic pressure hpBi is significantly

smaller than hpi and hprami, so the interplay between the lat-

ter two quantities determines core confinement. In Fig. 5, at

t¼�1 the ram pressure is sufficient to confine the core (i.e.

it is not re-expanding) over nearly its entirety. However, at

the white arrow, the local plasma pressure exceeds the ram

pressure, leading to plasma expansion. This “outflow” will

FIG. 3. Axially and azimuthally aver-

aged profiles from 3D simulation dur-

ing core compression (t� 0 ns).

FIG. 4. Axially and azimuthally aver-

aged profiles from 3D simulation dur-

ing core expansion (t� 0 ns).
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reduce compression in the core, as well as mix the hot, par-

tially stagnated plasma with the cooler, imploding plasma

(see Sec. II D).

By t¼�0.8 ns, outflow has developed on the top and

bottom of the core. At this point, the flow in the high-

pressure contour resembles two colliding jets, resulting in

high-pressure plasma that escapes out the sides.62 This flow

illustrates the inefficiency inherent in stagnation in the ab-

sence of perfect symmetry: Even while kinetic energy con-

verts to internal energy, the stagnated plasma simultaneously

tries to expand outward against regions of “low” ram pres-

sure, reconverting its internal energy to kinetic energy.

However, at t¼�0.6, we see the outflows redirected inwards

via multiple collisions with imploding plasma, thus forming

vortices that allow outflow to recompress and restagnate.

In Fig. 5, the purple contour representing the core continu-

ously grows in size, on average. While this growth is partially

due to actual plasma expansion (i.e., outflow), primarily, it is

due to shock accretion: imploding plasma collides with the

core and converts its kinetic energy to thermal energy, thus

effectively increasing the mass and size of the core. At

t¼�0.8 ns in Fig. 5, we see evidence of shock accretion in the

dashed oval, where high-velocity plasma is brought nearly to a

stop upon impact with high-pressure plasma. Consequently,

the boundary of the core there grows at t¼�0.6 ns. We will

discuss shock accretion in more detail in Sec. IV A.

FIG. 5. Plasma flows in the 3D simulation. Plotted are qðkg=m3Þ; pðJ=m3Þ; jvjðm=sÞ; TeðKÞ;TiðKÞ in the z¼ 3.5 mm plane, at four different times. Concentric

circles represent constant radius contours, spaced 0.1 mm apart. The purple contour represents “stagnated” plasma. Overlaid are velocity vector arrows indicat-

ing flow direction by the red tip.
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In the z¼ 3.5 mm plane visualized in Fig. 5, the implod-

ing plasma possesses enough symmetry that the core is cen-

tered about the axis and precursor plasma. In general, this is

not the case, as seen in Fig. 6, which shows the start of stag-

nation in the z¼ 2 mm plane. At t¼�2 ns, we see the

imploding plasma sheath will stagnate off axis (roughly at

the white ‘X’). In this more-common, off-axis stagnation,

the ensuing flows are significantly more complicated than

those seen in Fig. 5, but exhibit qualitatively similar

behavior.

C. c and ceff

We have seen that the hot, dense, “stagnated” plasma is

not really stagnant at all, consistent with experimental obser-

vation.28 Due to oblique collisions between streams, outflow

of high-pressure plasma, and vortex formation, the plasma

core retains significant hydrodynamic motion. To better

understand the net effect of the flows on energy transport, as

well as to connect to the theories in Sec. IV, we discuss the

energy equation (cf. Ref. 63)

qc

c� 1

D

Dt

p

qc

� �
¼ �L; (1)

where D=Dt ¼ @
@tþ v � r is the total derivative and c is the

ratio of specific heats, related to the pressure and specific in-

ternal energy e through (cf. Refs. 64 and 65)

c ¼ 1þ p

qe
: (2)

Also, L represents the net effect of all sinks and sources of

energy (e.g., thermal conduction, Joule heating, radiation,

viscous heating, etc.) In the special case L ¼ 0, we get the

usual adiabatic equation

D

Dt

p

qc
¼ 0; (3)

which is assumed in the theories in Sec. IV. Because L 6¼ 0

in general, the range of applicability of the theory is limited.

However, in certain cases, even when L 6¼ 0, the form of Eq.

(3) is maintained, with a different cef f 6¼ c. In other words,

Eq. (1) with L 6¼ 0 may be equivalent to

D

Dt

p

qcef f
¼ 0; (4)

in which case we can still apply the theory, substituting ceff

for c. Equation (4) implies

pðaÞ=qðaÞcef f ¼ AðaÞ; (5)

where a denotes a Lagrangian particle and AðaÞ is a constant

dependent only on a. Using p ¼ kb

mi
qðTi þ ZTeÞ in Eq. (5)

implies

Ti að Þ þ Z að ÞTe að Þ ¼ mi

kb
A að Þq að Þcef f�1; (6)

where mi is the ion mass and kb is the Boltzmann constant.

An example of cef f 6¼ c is provided in Sec. 6.3.7 of

Ref. 66, which considers a c¼ 5/3 gas, in the case where

T(a) of any given fluid element is maintained constant

through external means. Hence, even as the gas expands,

dropping its density, T(a) stays fixed. From Eq. (6), we then

see that ceff¼ 1 is appropriate.

D. ceff� 1 and enhanced thermal transport in 3D
simulation

In the 3D simulation, L 6¼ 0, but perhaps, is Eq. (4) ap-

plicable? Of particular interest is the axis r¼ 0, where peak

density and pressure are attained. If we can describe on-axis

plasma with an effective adiabatic exponent ceff, then Eq. (5)

implies hpðr ¼ 0Þi / hqðr ¼ 0Þicef f . As seen in Fig. 7, from

t¼�1 to 0 ns, hpðr ¼ 0Þi increases linearly with hqðr ¼ 0Þi,
which implies ceff� 1 is appropriate on axis. Also, from

p ¼ kb

mi
qðTi þ ZTeÞ, we can identify the slope of the line with

kb

mi
hTi þ ZTei on axis, which is approximately constant during

this time interval.

In the absence of energy sources or sinks ðL ¼ 0Þ, the

temperature in a plasma with c� 1.3 (appropriate for tung-

sten in the core) rises as the plasma compresses, following

T � qðc�1Þ � q0:3. Hence, somehow, the 3D simulation

allows temperature on axis to remain fixed rather than rise.

One possibility is thermal conduction j, which diffuses heat

from the hot core into the cooler, imploding plasma. In this

case, the diffusion of heat outwards is balanced by its con-

vection inwards, as discussed in Ref. 64. The net effect of j

FIG. 6. Off-axis stagnation in the z¼ 2 mm plane.

FIG. 7. Axially averaged pressure and density on axis, hpðr ¼ 0Þi and

hqðr ¼ 0Þi, from the 3D simulation, labelled by time. We also show

p(r¼ 0), q(r¼ 0) from an equivalent 1D simulation, described in Sec. III.
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is to allow Te in the hot core to penetrate into the imploding

plasma a distance le � je

qcV;eðDþviÞ, where je is the electron

thermal conductivity; cV,e is the electron specific heat

at constant volume; D is the core accretion velocity (see

Sec. V B), and vi is the velocity of imploding plasma. Using

“typical” values in the core (i.e., averaged over a r¼ 100 lm

surface), hqi � 250 kg=m3; hjei � 3e5W=m � K; hcV;ei �
9:4e3J=kg � K; D � 1:75e5m=s; vi � 8e4m=s, we find le �
0:5lm. Since the effective core size R(t) is roughly several

hundred lm (see Sec. V B), le 	 RðtÞ, and thermal conduc-

tion is ineffective at transporting heat away from the core. In

this discussion, we have focused on the dominant electron,

rather than ion, thermal conduction, which is consistent

with unmagnetized ions. Indeed, using hBi � 2600 T;
hTeiq � 1:4e7 K; hTiiq � 3e7 K; hZi � 60; hlnKi � 3:4, we

compute Xisii � 1e–4;Xesei � 0:7.

Figure 5 suggests an alternative to j by which tempera-

ture on axis remains constant during core compression.

Plasma may transport heat convectively, rather than diffu-

sively, through outflow, which allows hot plasma to expand

outward, even though on average the on-axis plasma com-

presses. The outflow and resulting mixing with cooler,

imploding plasma result in an enhanced thermal transport,

consistent with the relatively uniform Te(r) in the core (see

Figs. 3 and 4). Note that for a compressing plasma, cef f � 1

is sometimes used to describe a strongly radiating plasma,

which prevents temperature from increasing throughout the

plasma. In the 3D case, however, we are claiming ceff� 1

only near axis. Energy is not lost from the plasma, just trans-

ported outwards.

Looking at Fig. 7, from t¼ 0 to 0.2 ns, q and p drop, sig-

nifying the beginning of core expansion. During this phase,

the ram pressure of imploding plasma is insufficient to confine

the core, in an averaged sense. As the core expands, pðqÞ
again follows a straight line in Fig. 7, which suggests (i)

ceff� 1 and (ii) hTi þ ZTei is constant on axis, albeit with a

lower value than during core compression. For an adiabatic

plasma, T � qc�1, so for c> 1, we expect T to fall as q
decreases. Hence, in order for on-axis temperature to remain

constant (i.e. ceff� 1) during expansion, some heating mecha-

nism must supply energy to plasma on axis. Interestingly,

even though a ceff� 1 plasma prevents the peak temperature

from rising during compression, it also maintains temperature

on axis during expansion, rather than cooling as in the adia-

batic case.

We now consider what mechanism may keep on-axis

temperature constant during expansion. In Fig. 4, Te and Ti

are now peaked off axis, so jrT will transport heat towards

axis. Another possibility is on-axis Joule heating. However,

estimates show both these processes are insufficient to offset

pdV cooling during expansion. A likely cause for on-axis

heating is once again hydrodynamic motion. Looking at

Fig. 8, even though most of the plasma is expanding, we see

evidence of “channels” of imploding plasma, which carry

hotter plasma from the outer layers directly to the center of

the core. These channels supply both internal energy in the

form of hot plasma, as well as kinetic energy, which can be

dissipated in the core center. The channels are a direct result

of the imperfect symmetry.

E. Centrifugal force in 3D simulation

We argued in Sec. II D that complex fluid motion at

stagnation allows for enhanced heat transport and thus

ceff� 1, but this is not the only complication introduced by

the 3D flows. As seen in Fig. 5, the lack of symmetry during

stagnation can result in azimuthal flow, which may affect the

overall momentum balance of the stagnated plasma. Taking

the radial component of the MHD equation of motion,

q Dv
Dt ¼ �rpþ J� B yields

q
@vr

@t
¼ � @p

@r
� q vr

@vr

@r
þ vh

r

@vr

@h
þ vz

@vr

@z
� v2

h

r

� �
þ JhBz � JzBh:

The first two terms on the right-hand side represent forces

due to thermal pressure and radial ram pressure, respectively,

while the remaining terms in the bracket are due to 3D asym-

metry. We will focus on the centrifugal term qv2
h=r because

of its relative ease of computation; the qvh
r
@vr

@h and qvz
@vr

@z terms

involve potentially spiky derivatives, which may require

higher resolution simulations to compute accurately.

In Fig. 9, we compare centrifugal force hqv2
h=ri and ra-

dial pressure gradient �dhpi=dr at two times. At t¼�0.4 ns,

which is during the core compression, the two terms are

comparable throughout the core, the radial “boundary” of

which occurs at the black vertical line (see Sec. V B for how

this is defined). Hence, at this time, the radially outward

FIG. 8. q(kg/m3) and Te(K) in the z¼ 3.5 mm plane, at t¼ 0.6 ns. The

“channel” illustrates a possible heating mechanism even though the core is,

on average, expanding.
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centrifugal force is important in resisting the incoming ram

pressure. This observation qualitatively agrees with the ex-

perimental analysis of Maron et al.,40 who balanced the ram

pressure with both thermal and “hydrodynamic” pressure,

associated with residual motion in the shocked plasma.

At later time t¼ 0.8 ns, which is during core expansion,

the pressure gradient exceeds the centrifugal force over

much of the core (the boundary of which is denoted by the

red vertical line). The diminished role of centrifugal force

during core expansion is consistent with the fluid motion in

Fig. 8, which does not clearly exhibit the vortices seen ear-

lier. Recall that in Fig. 5, the vortices formed as a result of

outflow being redirected inward by ram pressure of incoming

flow. However, as seen in Fig. 4(b), the ram pressure profile

first rises and then falls with increasing radius. As the ram

pressure sampled by the core decreases, it will eventually be

insufficient to redirect the outflow back inward, and thus, no

vortices form.

III. “EQUIVALENT” 1D SIMULATION

To further assess the impact of 3D effects, we now con-

sider a 1D simulation of a plasma with density, radial veloc-

ity, and temperature derived from 3D simulation, just before

stagnation (we use the t¼�1.6 ns profiles in Fig. 3). How

does the resulting stagnation compare to the 3D simulation?

These 1D simulations are not entirely equivalent to the 3D

case in that we use a finer resolution (dr� 1 lm as opposed

to 20 lm used in 3D) and also set B¼ 0; we will comment

on these differences later.

In 3D, the imploding plasma may stagnate off axis, so

that precursor plasma does not play a critical role in the stag-

nation. This is not the case in 1D simulations, where perfect

azimuthal symmetry demands that the imploding plasma

drive a shock into the precursor plasma, which upon striking

axis, reflects outwards before a second shock is driven

inwards into the precursor. Eventually, at t��0.8 ns, the

shock reverberation evolves into a single shock traveling

through the imploding plasma. In Fig. 10, we compare 1D

and 3D simulations at this time. The 1D simulation clearly

illustrates shock structure, and results in a denser, smaller,

higher pressure core than in 3D. However, the temperatures

achieved are more similar, as shown in Fig. 10(d).

Figures 11(a) and 11(b) illustrate the time evolution of

1D density and pressure (measured at the shock front), which

peak earlier and higher than q and p in 3D (measured on

axis). Also, as shown in Fig. 11(d), the 1D shock radius is

smaller than its 3D counterpart (see Sec. V B), consistent

with off-axis, oblique collisions in 3D resulting in a larger,

more diffuse core.

In both 1D and 3D simulations, eventually, the ram pres-

sure of the imploding plasma is insufficient to confine the

FIG. 9. Axially and azimuthally averaged centrifugal force hqv2
h=ri (dashed

line) and radial pressure gradient �dhpi=dr (solid line), at t¼�0.4 ns

(black) and 0.8 ns (red). The vertical lines represent the boundary of the

stagnated plasma, as determined in Sec. V B (Rp¼1e12).

FIG. 10. Comparison between 1D and

3D simulation at t¼�0.8 ns and

t¼ 1.2 ns of (a) radial velocity, (b)

pressure, (c) density, and (d) electron

and ion temperature.
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high-pressure core, which begins to expands outward, collid-

ing into the incoming plasma. During this phase, the

decrease in p and q in the 1D and 3D simulations follow a

similar time dependence. Furthermore, as seen in Fig. 10, at

the later time t¼ 1.2 ns, even the p(r) and q(r) from 1D and

3D look more similar, suggesting that effectively the 3D

simulation is becoming more 1D-like.

Although the 1D and 3D simulations share similarities

during the expansion phase of stagnation, there is also an im-

portant difference. Recall from Sec. II C that an adiabatic

plasma obeys pðr ¼ 0; tÞ / qðr ¼ 0; tÞc. In Fig. 7, we plotted

hpðr ¼ 0; tÞi vs hqðr ¼ 0; tÞi from 3D simulation and

found that the adiabatic relation is only satisfied using

cef f ¼ 1 6¼ c; possibly the hydrodynamic flows in 3D result

in enhanced thermal transport, thus violating adiabaticity.

However, the 1D simulation does not allow 3D flows, so that

if thermal conduction is weak, the plasma in the stagnated

core is approximately adiabatic during the expansion phase

(at earlier time, the core is repeatedly shocked during the

shock reverberation, which, of course, is not an adiabatic

process). In Fig. 7, we plot p(r¼ 0, t) vs q(r¼ 0, t) from 1D

simulation during core expansion. In contrast to 3D, the adia-

batic relation p � qc is indeed satisfied, with c¼ 1.33 rather

than ceff¼ 1.

Another difference between 1D and 3D simulations is

the efficiency of kinetic energy dissipation. Figure 2 shows

that in 1D, 83% of the initial kinetic energy is converted to

internal energy during stagnation. Even in 1D, with its per-

fect azimuthal symmetry, the initial kinetic energy is not

completely dissipated, because the core plasma eventually

expands into the imploding plasma.

We might expect the kinetic energy dissipation process

to be much less efficient in 3D, due to the lack of symmetry

in the imploding plasma. Estimating the percentage of kinetic

energy converted to internal energy in 3D is complicated by

the presence of magnetic field. Not only can B increase the

internal energy through Joule heating, it can also add kinetic

energy through J�B work (see Fig. 2, t<�0.4 ns), as well

as remove kinetic energy if the plasma does work on the mag-

netic field (see t>�0.4 ns). Accounting for these effects, we

find that in 3D, from t¼�1.4 to 1.6 ns, approximately 66%

of the kinetic energy converts to internal energy, which is not

drastically lower than in 1D.

We now address the difference in resolution used in 1D

and 3D. In 1D, we must resolve the transmitted and reflected

shocks driven through the precursor plasma. We found

dr� 1 lm is sufficient, and these simulations appear nearly

converged. One might wonder if the 3D simulation also

requires such high resolution. However, 3D describes a

physically different scenario: in general, the plasma stag-

nates off-axis, invalidating the picture of shock reverberation

through the precursor. Furthermore, the more “messy” stag-

nation in 3D results in a physically larger core which may

not require as high resolution. Indeed, if we increase the re-

solution from dr¼ 20 lm to 10 lm, the results are similar,

with the peak pressure and density rising by 5% and 8%,

respectively, suggesting that 20 lm resolution is sufficient.

Finally, recall that the 1D simulation discussed here is

run with zero current. While we can specify initial (q, vr, T)

profiles in ALEGRA, no such option exists for specifying

initial current density jz(r). We can only affect this profile by

allowing the magnetic field to diffuse inward for an arbitrary

amount of time before the simulation is started. Hence, 1D

simulations initialized with non-zero current will possess a

different jz(r) than in 3D, which can result in significant

modification to the density and velocity profiles from their

3D counterparts, due to the different j�B forces.

Preliminary results indicate even if the initial jz(r) in 1D is

FIG. 11. Comparison between (a)

shock density in 1D and on-axis density

in 3D, (b) shock pressure in 1D and on-

axis pressure in 3D, (c) slope of veloc-

ity profile, and (d) shock location in 1D

and Rp¼1e12 in 3D. The green dashed

line represents predictions from shock

theory (Sec. V C), with t1¼�1.1 ns.

The red dashed line illustrates predic-

tions from the homogeneous stagnation

solution in Sec. VI A.
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fairly close to that in 3D, the j�B force, which is necessar-

ily radially inward in 1D, is more effective at accelerating

material inwards than in 3D, where material in the trailing

mass behind the plasma sheath may evolve towards force-

free structures,58 so that j�B is diminished.

IV. SELF-SIMILAR SOLUTIONS FOR COMPRESSION
AND EXPANSION OF PLASMAS

Having surveyed the simulations, we now consider a

more idealized setting: 1D self-similar solutions. This study

will enable us to make quantitative comparison with the

qualitative features examined in the Secs II and III. Self-

similar solutions often provide a good description of the

compression and expansion of shocked fluids. As explained

in Ref. 67, this happens because self-similar flow can repre-

sent an intermediate asymptotic of a more general flow, the

stage which is asymptotically approached when, on the one

hand, the early-time details of the flow origination are no

longer relevant and, on the other hand, the length scales asso-

ciated with processes that violate self-similarity are still

small compared to the global length scale of the flow. There

is a wide variety of ideal-gas self-similar shock solutions for

planar, cylindrical, and spherical geometries, which include,

but are not limited to, the Sedov’s blast wave solution and

Guderley’s collapsing shock solution. These classical solu-

tions are described in detail in monographs.64,66,68–70 The

original Noh’s solution in gas dynamics54 that we are inter-

ested in here, as well as its generalizations,71 belong to the

same family, as explained in Ref. 53.

After passage of all shock and expansion waves, a dif-

ferent kind of self-similar flow is asymptotically established.

It is characterized by homogeneous deformation, which

means that the deformation rate tensor @vi=@xk (here the sub-

scripts i¼ 1, 2, 3 correspond to the axes x, y, z) is

coordinate-independent, and hence the fluid motion does not

generate any shock or sonic perturbations. At this stage, uni-

form compression and expansion of the fluid are possible.

Shockless self-similar solutions of this kind were first studied

in gas dynamics by Sedov,68 and then generalized for MHD

in cylindrical geometry in Ref. 15.

Here, we present a brief description of solutions of both

kinds, referring the reader to the Supplementary material53

for details.

A. Noh problem and its self-similar solutions

Consider a cold (i.e. T¼ 0) plasma of uniform mass den-

sity qi and velocity –vi, which is about to stagnate either

upon a rigid boundary in planar geometry, as illustrated in

Fig. 12(a), or to the axis or center of symmetry in cylindrical

and spherical geometry, respectively. The Noh problem,

while highly idealized, clearly illustrates the interplay

between thermal pressure p of the stagnated plasma and the

ram pressure qv2
i of the incident plasma.

Consider the imploding gas as composed of a series of

fluid particles, as illustrated in Fig. 12(a). When the first par-

ticle strikes the rigid boundary, it comes to a full stop, con-

verting its kinetic energy into thermal energy. Its

temperature at stagnation is, therefore,

kbTf ¼
c� 1

2
miv

2
i : (7)

The particle stagnates after passing a strong shock wave, in

which its density increases to

qf ¼
cþ 1

c� 1
qp; (8)

where qp is the pre-shock density, i.e., the imploding plasma

density immediately before passing through the shock. From

(7) to (8), we find the pressure at stagnation

pf ¼
cþ 1

2
qpv

2
i : (9)

Since vi equals the mass velocity of the shocked plasma

with respect to the cold pre-shock plasma, the speed of the

shock wave in the same reference frame equals

vs ¼ ðcþ 1Þvi=2. Relative to the stagnated particle 1 at rest,

the outgoing shock front propagates at the velocity

D ¼ vs � vi ¼
1

2
c� 1ð Þvi: (10)

Particle 2 then crashes into particle 1, which, being at high

pressure, brings particle 2 to a stop, so its kinetic energy is

also converted into thermal energy. At this point, as illus-

trated by Fig. 12(b) for planar geometry, we have a hot

plasma core (comprised of particles 1 and 2) bounded by

imploding plasma (particles 3 and 4).

Despite its high pressure, the core is confined in the

sense that velocity is zero there; this confinement is due to

the ram pressure qpv
2
i of the imploding plasma. Although the

stagnated plasma is not moving, its outer boundary R(t) is

nonetheless expanding due to mass accretion at constant ve-

locity dR/dt¼D, see (10), as the imploding particles imme-

diately adjacent to the core collide into and are stopped by

the core. At tf ¼ 2
cþ1

Ri

vi
, the final fluid element (i.e., particle 4

in Fig. 12) has dissipated its kinetic energy, and stagnation is

complete. The 1D Noh solution is 100% efficient in

FIG. 12. (a) Initial condition for the Noh problem (t¼ 0). The ovals repre-

sent fluid particles constituting the gas, of length Ri. (b) Solution in planar

geometry for t> 0. Fluid particles 1 and 2 have smashed into the wall,

thereby compressing and heating as their kinetic energy converts to internal

energy.
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converting kinetic energy into internal energy: at t¼ tf, all

the kinetic energy is dissipated. After this time, the hot core

will expand outwards through a rarefaction wave, since there

is no longer incoming ram pressure to keep it confined.

For planar geometry, the pre-shock density of the cold

gas qp is equal to qi, the uniform density of the incident gas

at t¼ 0. In cylindrical or spherical geometry, the imploding

gas cannot maintain its flat density profile for t> 0 due to

convergence. One can find the pre-shock density profile from

the continuity equation

@q
@t
þ 1

r��1

@

@r
r��1qv
� �

¼ 0; (11)

where �¼ 1, 2, and 3 for planar, cylindrical, and spherical

geometry, respectively. Noting that at zero temperature the

density increase due to convergence does not translate into a

pressure increase affecting the implosion velocity, we substi-

tute v¼�vi¼ constant into (11) and solve the resulting

equation with the initial condition q(r,t¼ 0)¼ qi to obtain

q r; tð Þ ¼ qi

vit

r
þ 1

� ���1

; (12)

where r�Dt. Substituting r¼Dt into (12) and using (10),

we find the pre-shock density qp ¼ ½ðcþ 1Þ=ðc� 1Þ
��1qi,

and therefore, the stagnated density equals

qf ¼
cþ 1

c� 1

� ��
qi: (13)

In the planar case, �¼ 1 illustrated in Fig. 12, qp¼qi,

and the total compression described by Noh’s solution equals

the strong-shock compression (i.e. 4 for c¼ 5/3). For cylin-

drical and spherical geometry, the total compression equals

the strong-shock compression squared and cubed, respec-

tively (i.e., 16 and 64 for c¼ 5/3).

The density, velocity, and pressure profiles characteris-

tic of the Noh’s solution are, therefore, self-similar, pre-

sented as

q r; tð Þ
qf

¼
1; 0 � g � 1

c� 1

cþ 1

� ��
2þ c� 1ð Þg

c� 1ð Þg

� ���1

1 < g;

8><
>: (14)

p r; tð Þ
pf
¼ 1; 0 � g � 1

0; 1 < g;

�
(15)

v r; tð Þ
vi
¼ 0; 0 � g � 1

�1; 1 < g;

�
(16)

where

g ¼ r=RðtÞ (17)

is the self-similar coordinate.

Basko et al.21 treat a similar problem, including radiation

losses. As the losses increase, the shocked plasma cannot

maintain the high pressure necessary to withstand the ram

pressure of the imploding particles. Hence, the core com-

presses, thus decreasing the shock accretion velocity D (for

strong radiative losses, D! 0). One of the reasons we turn

off radiation in the 3D simulation is to observe nonzero D.

The defining condition of the Noh family of solutions is

the requirement that the pre-shock plasma is cold. This con-

straint cannot be removed without the necessity to analyze

the plasma flow at t< 0, before stagnation, in which case one

has to deal with the Guderley,64,66,69,70 Rayleigh,64,66 or

some other gasdynamic problem72 involving a self-similar

compression followed by shock reflection. However, one can
remove the requirements54 that both the velocity and density

profiles at t¼ 0 are flat. Instead, we can assume arbitrary ini-

tial power-law profiles53

qðr; t ¼ 0Þ ¼ qiðr=RiÞ2v; (18)

vðr; t ¼ 0Þ ¼ �viðr=RiÞ�k; (19)

where v > �1 and k > �1 are dimensionless power indices

(see Fig. 13(a)). This generalized Noh problem, which

includes the standard Noh solution as a particular case (i.e.

v ¼ k ¼ 0), is useful for comparison to simulation. For the

sake of simplicity, in (18), (19), and all equations that follow,

we focus on cylindrical geometry, �¼ 2; the planar and

spherical case are discussed in Ref. 53.

The shock front initially formed at r¼ 0 propagates out-

ward (see Fig. 13(b)), following a power-law trajectory

R tð Þ ¼ Ri t=tmð Þ
1

1þk; (20)

where tm is a constant, positive time scale. The shock propa-

gation velocity corresponding to Eq. (20) varies with time

D tð Þ � dR=dt ¼ Ri

tm

1

1þ k
t

tm

� �� k
1þk

: (21)

The self-similar coordinate is still defined by Eq. (17),

where R(t) is now given by Eq. (20). We can express the

self-similar solution of the generalized Noh problem as

v r; tð Þ ¼
dR

dt
� V gð Þ; (22)

q r; tð Þ ¼ qm t=tmð Þ
2v

1þkG gð Þ; (23)

FIG. 13. (a) Initial q(r,t¼ 0) and v(r,t¼ 0) for the generalized Noh solution.

Here v> 0 and k< 0. (b) Shock solution at t> 0. Unlike the Noh solution,

there is finite velocity inside the shocked plasma (located at r<R(t)), with

vðr ¼ RðtÞ�Þ � vcore.
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p r; tð Þ ¼ pm t=tmð Þ
2 v�kð Þ

1þk P gð Þ; (24)

where qm and pm are positive, dimensional constants repre-

senting density and pressure scales, respectively (in general

qm 6¼ qi in Eq. (18)). The spatial profiles of velocity, density,

and pressure are specified by dimensionless functions V (g),

G(g), and P(g), respectively.

To develop intuition for how the spatially varying initial

profiles alter the standard Noh solution, we consider the ini-

tial ram pressure profile

pramðr; t ¼ 0Þ ¼ qðr; t ¼ 0Þv2ðr; t ¼ 0Þ ¼ qiv
2
i ðr=RiÞ2ðv�kÞ:

(25)

For v� k > 0, as is the case illustrated in Fig. 13(a), the ini-

tial ram pressure increases with increased radius, and the

resulting shock solution is sketched in Fig. 13(b), with non-

zero velocity in the core. Recall that in the standard Noh so-

lution,54 the initial ram pressure profile is flat (i.e.

v ¼ k ¼ 0), and the velocity in the shocked core is zero, cf.

Eq. (16), even though its outer boundary is constantly bom-

barded by the imploding fluid. In the case of v� k 6¼ 0, this

delicate balance is broken: for increasing ram pressure pro-

file v� k > 0, as in Fig. 13, the rising pram felt by the core

boundary results in continuous compression of the core, so

that vcore � vðr ¼ RðtÞ�; tÞ < 0. Consequently the plasma

pressure in the core continuously rises. Conversely, for

v� k < 0, the initial ram pressure decreases with increasing

radius, and vcore> 0, i.e., now the diminishing ram pressure

felt by the core boundary cannot perfectly confine the core

plasma, which expands into the imploding plasma.

Hence, even in 1D, it is nontrivial to dissipate all the im-

plosion kinetic energy. While imploding plasma dissipates

its kinetic energy as it runs into the shock, simultaneously

stagnated core material bounded by the shock front may

expand outwards, reconverting its internal energy back into

kinetic energy. Global evidence for this behavior was

observed in the 3D simulation after t¼ 0 ns (see Fig. 4).

The compression/expansion of the core when v� k 6¼ 0

can have a significant effect on its overall behavior. For

instance, the shock velocity D is related to the velocity of

imploding plasma entering the shock front, vðg ¼ 1þÞ, by an

approximate relation53

D

jv g ¼ 1þ
� �

j
’ c c� 1ð Þ

2cþ v� kð Þ cþ 1ð Þ ; (26)

and the total compression of a plasma particle from t¼ 0 till

it passes through the strong shock is well approximated by53

qs

qi

’ 1

c v� kþ cð Þ
vþ cð Þ cþ 1ð Þ þ c2 � 2c� 1

� �
k

c� 1ð Þ kþ 1ð Þ

" #2

:

(27)

For v ¼ k ¼ 0, Eqs. (26)–(27) are exact and reproduce (10)

and (13) (where the post-shock density qs equals the con-

stant density of the core, qf). Otherwise the density peaks at

the shock front for ðc� 1Þvþ k > 0 and diverges at the

axis for ðc� 1Þvþ k < 0. In the former case Eq. (27) esti-

mates the highest plasma density within the core, and in the

latter case, as in Fig. 13(b) – the lowest. Consider, for

example, a c¼ 5=3 plasma with initial profiles that corre-

spond to v ¼ 0:25; k ¼ �0:6, leading to continual core

compression. Then Eqs. (26)–(27) yield D ’ 0:198jvðg ¼
1þÞj and qf ’ 122:5qi. Hence the compression reached by

these profiles is larger, and the shock velocity slower, than

their flat54 v ¼ k ¼ 0 counterpart, for which D ¼ jvðg ¼
1þÞj=3 ¼ vi=3; qf ¼ 16qi.

B. Homogeneous stagnation solution

We now consider a shockless stagnation in which

plasma compresses uniformly, while converting kinetic

energy into internal energy through pdV heating. We discuss

the simplest, purely hydrodynamic version of this problem,

which may be generalized to include magnetic field,15–17

radiation,18 and angular velocity.73 As above, we focus on

cylindrical geometry. The initial condition at t¼�ti is illus-

trated in Fig. 14(a), in which we have sketched the isother-

mal solution. As in the shock solution, we consider a row of

fluid elements imploding towards axis. However, unlike the

shock solution, the elements have finite temperature and

pressure, and the velocity profile is linear, which is necessary

for shockless compression. In Fig. 14(b), we illustrate the

plasma at later time.

Inspecting (19), we note that linear velocity profile

would correspond to the value k¼�1, which is inconsistent

with the shock dynamics given by Eqs. (20)–(21). Therefore

the solutions reviewed here do not belong to the Noh family

FIG. 14. (a) Initial condition for the isothermal homogeneous stagnation so-

lution (t¼�ti). (b) Solution at t > �ti. All fluid elements have compressed

and heated as their kinetic energy is converted to internal energy. (c) Sketch

of fluid element trajectories. Unlike the Noh solution, here t¼ 0 corresponds

to the end of stagnation, rather than the beginning.

082703-12 Yu, Velikovich, and Maron Phys. Plasmas 21, 082703 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.102.153.1 On: Wed, 06 Aug 2014 13:47:12



described in Sec. IV A. Recall that in the shock solution of

Sec. IV A, each fluid element travels unimpeded towards

axis until it strikes the boundary of the shocked plasma,

whereupon its kinetic energy suddenly converts to internal

energy. In contrast, in homogeneous stagnation, each fluid

element continuously converts its kinetic energy to internal

energy, as it does pdV work while compressing the fluid ele-

ments in front of it. Hence, as a given fluid element implo-

des, it gradually slows down (see Fig. 14(c)), and its

temperature constantly rises (at least for thermodynamically

stable plasma with c> 1). At t¼ 0 all fluid particles simulta-

neously come to rest, signifying the end of stagnation, before

expanding at t> 0. Like the Noh solution in Sec. IV A, the

homogeneous stagnation converts 100% of the initial kinetic

energy into internal energy at the end of stagnation.

The definition of the self-similar coordinate (17) does

not change, but now the time dependence of the radial length

scale R(t) is not a power law, and cannot be prescribed in

advance, as in (20), but rather should be determined from the

equation of motion. As a consequence of the linear velocity

profile, in (22) we have VðgÞ ¼ g. Hence the self-similar

coordinate g has the physical meaning of a Lagrange coordi-

nate of a fluid element, whose radial trajectory can be written

as Rðg; tÞ ¼ Rf ghðtÞ. Here Rf is a characteristic dimensional

length scale, for which the outer radius of the plasma column

at maximum compression can be chosen. Each fluid element

labelled by its Lagrange coordinate g moves according to the

same time law h(t), thus allowing all elements to move in

unison, as shown in Fig. 14(c), rather than crashing into each

other and forming shocks. As a consquence, unlike in the

Noh model described in Sec. IV A, there is no shock accre-

tion, and during the stagnation stage the time-dependent

length scale of the problem

RðtÞ ¼ Rf hðtÞ (28)

shrinks rather than grows with increasing time.

The governing equations here are the same as in Sec.

IV A, ideal-gas equations of continuity, adiabaticity, and

motion. But now we seek the self-similar solution in a dif-

ferent form. While Eq. (22) stays the same, with self-

similar velocity profile given by

v r; tð Þ ¼ Rf
dh

dt
g ¼ dh

dt

r

h tð Þ ; (29)

the density and pressure are sought in the form

q r; tð Þ ¼
qf

h tð Þ2
G gð Þ; (30)

p r; tð Þ ¼
pf

h tð Þ2c P gð Þ: (31)

Here qf and pf are on-axis density and pressure at the

moment of peak compression t¼ 0. The functions G(g) and

P(g), as in Sec. IV A, represent density and pressure profiles.

Equations of continuity and adiabaticity are automati-

cally satisfied by (29)–(31) with arbitrary functions G(g) and

P(g). Separation of variables in the equation of motion

imposes a single relation between these two functions, which

for our stagnation problem can be expressed as

dP

dg
¼ �gG: (32)

Then the time dependence of the normalized length scale

h(t) is found from the equation of motion

d2h

dt2
� 1

t2
0h2c�1

¼ 0; (33)

where we have denoted

t0 ¼
ffiffiffiffiffi
qf

pf

r
Rf ; (34)

a dimensional constant that plays the role of an effective

confinement time, as we will see shortly. Without loss of

generality, we can supplement these equations with the ini-

tial and boundary conditions

hðt ¼ 0Þ ¼ Gðg ¼ 0Þ ¼ Pðg ¼ 0Þ ¼ 1: (35)

To find a particular solution we have to specify either

one of the functions G(g) and P(g) or a relation between

them, and the value of c. In this work we focus on the iso-

thermal solution with a flat temperature profile, which

implies G(g)¼P(g). Then, from (32) and (35), we obtain

GðgÞ ¼ PðgÞ ¼ e�g2=2: (36)

Choosing the value of c¼ 1, which is appropriate for isother-

mal motion in general and for our 3D simulation in particu-

lar, see Sec. II D, we solve (33) to obtain

dh

dt
¼ 7

ffiffiffiffiffiffiffiffiffi
2lnh
p

t0
; (37)

7
t

t0

¼ �i

ffiffiffi
p
2

r
erf i

ffiffiffiffiffiffiffi
ln h
p� �

¼
ffiffiffi
p
2

r
erfi

ffiffiffiffiffiffiffi
ln h
p� �

; (38)

where the upper and lower signs correspond to implosion

(t< 0) and expansion (t> 0) stages, respectively. In (38),

erf(z) is the error function, and erfiðzÞ � erfðizÞ=i is real and

positive if its argument z is. From Eqs. (29) and (37) we

determine the time-dependent slope of the velocity profile:

m ¼ @v=@r ¼ v=r ¼ 7
ffiffiffiffiffiffiffiffiffi
2lnh
p

=ðht0Þ: (39)

In Fig. 15, we plot the normalized trajectory

hðtÞ ¼ Rðg ¼ 1; tÞ=Rf . The g¼ 1 fluid element implodes

towards the axis at t< 0, gradually slowing down, until at

t¼ 0 it comes to a stop at minimum radius Rf. Note that at

t¼�t0, this fluid particle has reached r¼ 1.468Rf, i.e., it will

not compress much further. Hence, as in Ref. 66, we can

roughly identify t0 as a confinement time, during which the

fluid is effectively at rest.

To apply the solution for comparison with our simula-

tion, starting from some initial time �ti < 0 we specify the

initial density on axis qi, initial pressure on axis pi, initial ra-

dius Ri of the g¼ 1 fluid element:
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Ri ¼ Rf hð�tiÞ � Rf hi; (40)

the initial velocity of this element:

Ui ¼ Rf
dh

dt

� �
t¼�ti

¼ �Rf

t0

ffiffiffiffiffiffiffiffiffiffi
2lnhi

p
(41)

and the initial ratio of thermal energy to kinetic energy of the

plasma:

�i ¼
Ð

pdVÐ
1
2
qv2dV

¼
2pR2

f pf

2pR2
f qf

Rf

t0


 �2

2lnhi

¼ 1

2lnhi
¼ pf

qf U
2
i

: (42)

Here we have used (29)–(31), (36), and (37) to perform the

integration.

During stagnation (i.e. �ti < t < 0), the kinetic energy

decreases in time as lnhðtÞ, but the thermal energy remains

constant, equal to pf R
2
f . This peculiarity is unique to the

c¼ 1 case; for c> 1 the internal energy rises while the ki-

netic energy falls, so as to maintain conservation of energy.

Hence c¼ 1 corresponds to a case in which the internal

energy gained as a result of converted kinetic energy is im-

mediately lost from the plasma, for instance through radia-

tion. As seen in Sec. II D, the c¼ 1 solution is also relevant

to on-axis plasma in the 3D simulation, where rapid thermal

transport prevents any increase in the on-axis temperature.

We can now invert Eqs. (40)–(42) to solve for the

unknowns: Rf (minimum radius achieved by the g¼ 1 fluid

element), t0 (effective confinement time), and hi (from which

we can determine the initial time �ti, via Eq. (38)). Note that

the initial time �ti is not arbitrary, because in this solution

we are assuming the stagnation is complete by t¼ 0. Hence,

the time interval ti is the stagnation time, i.e., the time it

takes for an imploding plasma parameterized by Ri, Ui, �i to

come to a full stop. From Eq. (42) we find

hi ¼ e
1

2�i ; (43)

which from (30), (36) determines the peak on-axis density

qf ¼ qih
2
i ¼ qie

1
�i : (44)

From Eqs. (40) and (43), we determine the final radius

Rf ¼ Ri=hi ¼ Rie
� 1

2�i ; (45)

and from Eqs. (41), (43), and (45) we obtain

t0 ¼
Rf

jUij
ffiffiffiffiffiffiffiffiffiffi
2lnhi

p
¼ Ri

jUij
e
� 1

2�iffiffiffiffi
�i
p : (46)

Finally, Eqs. (38) and (43) determine the stagnation time

ti ¼ t0

ffiffiffi
p
2

r
erfi

1ffiffiffiffiffiffi
2�i

p
� �

¼ Ri

jUij
e
� 1

2�iffiffiffiffi
�i
p

ffiffiffi
p
2

r
erfi

1ffiffiffiffiffiffi
2�i

p
� �

: (47)

Note the important role played by �i: smaller �i (i.e. lower

initial pressure) results in deeper compression (Eq. (45)) and

higher final density (Eq. (44)), as is reasonable.

V. COMPARISON OF 1D GENERALIZED NOH TO
SIMULATION

A. Pre-stagnation profile and caveats

We now investigate if the 1D generalized Noh solution

of Sec. IV A can describe aspects of 3D simulation. Recall

that this theory requires the density and velocity profiles just

before the start of stagnation. In Fig. 3(b), we see that after

t¼�1.6 ns, p starts to rapidly increase on axis, signifying

the start of stagnation. Hence we take the profiles at

t¼�1.6, shown in Fig. 16, as appropriate for input into the

theory.

Roughly speaking, the profiles can be divided into two

phases. In “phase 1,” corresponding to r � 0:5 mm, we can

fit v � 0:25; k � �0:6 (see Eqs. (18) and (19)), so that

v� k > 0. As discussed in Sec. IV A, in this case the

increasing ram pressure felt by the core results in continuous

compression. In “phase 2,” corresponding roughly to

r> 0.8 mm, v � �0:8; k � 0. Now, due to the decreasing

ram pressure, shocked plasma expands into the imploding

plasma.

FIG. 16. Axially and azimuthally averaged density hqi (kg/m3), pressure hpi
(J/m3), radial velocity hvriq (m/s), and ram pressure hqihvri2q (J/m3) at

t¼�1.6 ns. Dashed purple curves are power-law fits to density and velocity.

FIG. 15. Normalized trajectory h(t)¼R(t)/Rf, density on axis, and slope of

velocity as functions of time, for c¼ 1, isothermal homogeneous stagnation.
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Before comparing theory with simulation, we must point

out some complications. First, the shock theory described in

Sec. IV A assumes a cold (i.e. Ti¼ Te¼ 0) imploding

plasma, whereas here the imploding plasma possesses a finite

temperature and pressure, which will reduce shock compres-

sion. However, because the Mach number of the imploding

plasma is fairly high (�5), we are close to the strong shock

limit assumed in the theory.

Second, the shock theory doesn’t account for a precursor

plasma on axis, which is clearly seen in Fig. 16. However, as

seen in Fig. 6, in 3D simulation the stagnation usually occurs

off axis, so that in the case of a small precursor (as is the

case here), the precursor may not play an essential role in

determining the stagnation conditions. Hence we will

attempt to apply the generalized Noh solution to the 3D sim-

ulation, ignoring the precursor on axis.

Third, theory assumes the adiabatic energy equation (3)

holds throughout the shocked plasma, with c defined by Eq.

(2). However, we have seen in Sec. II D that on axis, in 3D

simulation it is more appropriate to use cef f � 1 6¼ c � 1:3.

Therefore, whereas theory requires only a single value of c,

in 3D simulation we must consider 2 values: ceff (which

determines p=qcef f ¼ const on axis) and c (which determines

the shock jump q2=q1 ¼ ðcþ 1Þ=ðc� 1Þ at the core bound-

ary). This complication will alter those expressions which

depend on c, such as Eqs. (26) and (27). However, those pre-

dictions which are independent of c remain valid.

B. Shock boundary R(t) in 3D

A signature of the shock solution is the continuous

growth of the shock boundary R(t). However, we cannot

discern a well-defined shock boundary in the averaged pro-

files in Figs. 3 and 4. Although we have seen shock

accretion-like behavior in Fig. 5, because the shocks occur

at different locations at a given time, the averaged profiles

vary gradually.

Recall the intuitive picture behind the generalized Noh

problem: plasma stagnates on axis, forming a core of suffi-

cient pressure that it can resist the incoming ram pressure,

thus allowing the core to grow through accretion. Although

we cannot discern a shock discontinuity in Fig. 17(a), we

notice that the hpðrÞi profile grows in the sense that the radial

location of the intersection of hpðrÞi with a fixed value p0,

which we denote by Rp(t), increases with time (i.e., Rp satis-

fies hpðRpÞi ¼ p0). In Fig. 17(a), we show the location of

Rp(t) for p0 ¼ 1e12 J=m3, which is on order the incoming

ram pressure (see Fig. 16). In the absence of a discernable

shock, we use Rp(t) as a measure of the shock boundary.

In Fig. 17(b), we plot Rp(t) for several values of p0. All

Rp(t) show qualitatively the same behavior, rising rapidly

before reaching a stage of linear growth. At late enough

time, we see Rp(t) saturate. To understand this, recall Rp

grows through shock accretion: imploding plasma impacts

upon the plasma core, converting to stagnated plasma with

pressure ps � p0. However, during phase 2, the ram pressure

of imploding plasma is decreasing, and since the stagnated

plasma pressure ps is on order pram (see for instance Eq. (9)),

eventually, ps < p0. At this point, Rp can no longer grow: the

accreting plasma does not have sufficient pressure to be

detected by Rp¼p0
.

The generalized Noh solution predicts RðtÞ / t
1

1þk (see

Eq. (20)), which in phase 1 (k¼�0.6) implies RðtÞ / t5=2.

More specifically, the theory yields RðtÞ ¼ 1e18t5=2 (where

R and t are measured in meters and seconds, respectively),

shown in Fig. 17(b). The growth shown in 3D simulation is

much faster, and the time dependence is qualitatively differ-

ent from t5=2. Hence, the shock solution does not provide an

adequate description of the phase 1 R(t). This is reasonable:

during phase 1, in 1D cylindrical geometry a very compact,

high density core is formed. In 3D, the lack of symmetry

results in a much larger, lower density core, with effectively

larger R(t). This is due not only to plasma striking off axis

but also plasma expanding through outflows.

At t¼�0.8 ns, peak pram is reached in 3D, and the sub-

sequent decrease in pram signifies the start of phase 2 (k¼ 0).

For this phase, we expect linear growth in R(t), although we

also expect a transition period during which the solution

switches from phase 1 to phase 2. Indeed, by t��0.6 ns, Rp

shows linear growth. The shock velocity D¼ dRp/dt varies

slightly depending on the value of p0 used to define Rp(t),
but D¼ 1.75e5 m/s provides a reasonable overall fit. To

compare this value to the shock theory, we assume that the

plasma is described by a single value of c¼ 1.32. Plugging

FIG. 17. (a) Axially and azimuthally averaged pressure hpi at times

t1¼�0.8 ns, t2¼�0.4, t3¼ 0, t4¼ 0.4. The intersection of hpðrÞi with p0

defines Rp(t). b) Rp(t) for various values of p0. Dotted lines show

dRp=dt ¼ D ¼ 1:75e5 m=s.
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v ¼ �0:8; k ¼ 0; c ¼ 1:32; vðg ¼ 1þÞ ¼ 6e5 m=s into Eq.

(26) yields D¼ 3.2e5 m/s, considerably faster than the

observed value, which is reasonable. As mentioned earlier,

theoretical results that depend on c are not accurate, because

theory assumes that the plasma can be defined by a single c.

However, as seen in Sec. II D, this is not the case, and the

lower effective value of on-axis c will result in a lower D.

C. On-axis q(t), p(t), and m(t) in 3D

As mentioned in Sec. V A, the presence of c and ceff pre-

cludes the use of theoretical predictions that depend on c.

Nonetheless, from Eqs. (20), (23), and (24), the shock theory

allows us to predict how q(t) and p(t) evolve at a fixed value

of g¼ r/R(t). For instance, at the shock front R(t), g¼ 1 so

that qðRðtÞÞ ¼ qmhðtÞ2vGðg ¼ 1Þ / t
2v

1þk and pðRðtÞÞ / t
2ðv�kÞ

1þk .

Since these results are independent of c, we expect they

remain valid even in the 3D simulation.

Unfortunately, as mentioned earlier, the 3D-averaged

profiles in Figs. 3 and 4 do not exhibit a well-defined shock,

preventing us from following q(t), p(t) there. Nonetheless,

we can clearly define q(t), p(t) at r¼ 0, corresponding to

g¼ 0. In the approximate analytic solution to the generalized

Noh problem, PðgÞ � constant for g< 1, so that p(r,t) is spa-

tially flat in the shocked plasma. In this case, Eq. (24) pre-

dicts that at r¼ 0 (or any r<R(t)), pðr ¼ 0; tÞ / t
2ðv�kÞ

1þk .

In the same analytic approximation, the density profile

GðgÞ / g
2½ðc�1Þvþk

ðv�kþcÞ , so except for the special case, ðc� 1Þvþ

k ¼ 0; Gðg ¼ 0Þ is either zero or infinite. In the case where

Gðg ¼ 0Þ ! 1, in 1D simulations, the density on axis

increases faster than the predicted t
2v

1þk, as it asymptotes

towards infinity. Finite thermal conductivity, not accounted

for in theory, will tend to smooth out the density profile

G(g), and recover qðr ¼ 0; tÞ / t
2v

1þk.

Finally, in the analytic approximation, VðgÞ ’ g in Eq.

(22), so v(r) is linear in the shocked plasma. Hence, another

comparison we can make is how the slope of the velocity m
evolves in time. From (20)–(22), we find

mðtÞ / 1=t: (48)

As discussed in Sec. V A, the non-monotonic ram pressure

profile suggests stagnation will occur in two phases. During

phase 1 (v¼ 0.25, k¼�0.6), the increasing ram pressure

results in continuous compression of the stagnated plasma:

p / t
2ðv�kÞ

1þk � t4:25; q / t
2v

1þk � t1:25. In Fig. 18, we compare

these predictions to hqðr ¼ 0; tÞi; hpðr ¼ 0; tÞi;mðtÞ from 3D

simulation, and find unconvincing agreement. Most likely, the

initial formation of the stagnating core in 3D, which involves

oblique and off-axis collisions, does not possess enough azi-

muthal symmetry to be described by a 1D shock.

During phase 2 of stagnation ðv ¼ �0:8; k ¼ 0Þ, shock

theory predicts the stagnated plasma expands into the

imploding plasma, so that both the pressure and density on

axis fall as t�1.6. As seen in Fig. 18, these predictions agree

much better with the 3D simulation. Unlike phase 1, during

phase 2, a fairly “large” (relative to the imploding plasma

profile), high pressure core has already formed on axis,

allowing the 1D shock theory to be more easily realized.

D. Comparison of generalized Noh to 1D simulation

One might expect the generalized Noh solution to be

more applicable to the 1D equivalent simulation, which is

free from 3D effects. However, as described in Sec. III, the

initial stagnation involves a reverberating shock driven

through the plasma precursor. This behavior is beyond the

scope of the Noh solution, which only treats a single

outward-propagating shock.

Eventually, the shock reverberation transitions to a sin-

gle shock, and we can apply the theory. By this time

FIG. 18. hqðr ¼ 0; tÞi; hpðr ¼ 0; tÞi, and slope of mass-averaged radial veloc-

ity from 3D simulation are shown in red. Black and green curves are power-

law fits predicted by shock theory, with t0¼�1.4 ns and t1¼�1.1 ns. The

blue curve illustrates the homogeneous stagnation solution (see Sec. VI B).
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(t¼�0.8 ns), the compression phase has just completed, and

the core starts to expand in response to the decreasing ram

pressure, in accordance with phase 2 of stagnation. As seen

in Figs. 11(a) and 11(b), the shock density and pressure in

1D eventually settle onto the t�1.6 solution predicted by the

theory. Also, in Fig. 11(c), m(t) obeys the predicted 1/t solu-

tion (48) after a transition period. These observations suggest

that after a compression phase that is not described by the

generalized Noh solution, both 1D and 3D simulations transit

to an expansion phase of stagnation, which is well-described

by the theory.

VI. APPLICATION OF HOMOGENEOUS STAGNATION
SOLUTION TO 3D SIMULATION

A. ceff� 1, isothermal homogeneous stagnation
solution

As seen in Sec. V C, the generalized Noh solution does

not accurately describe the compression phase of 3D stagna-

tion. This discrepancy is not surprising, since in the shock

solution, the fluid striking the stagnated core dissipates

nearly all its kinetic energy owing to perfect azimuthal sym-

metry. In contrast, in 3D, the fluid may collide obliquely and

off axis, thus resulting in a high pressure core which retains

significant residual motion. Furthermore, as seen in Fig. 3(c),

this motion is characterized by a nearly linear hvrðrÞiq.

These properties suggest that the homogeneous stagnation of

Sec. IV B may be applicable.

As noted in Ref. 66, the homogeneous stagnation solu-

tion comes in many flavors: the solution can describe plasma

that is isothermal, isentropic, etc. To understand what type of

solution is appropriate for application to 3D simulation, we

plot the total temperature profile hTti � hTi þ ZTei (com-

puted via
hpi
hqi

mi

kb
) in Fig. 19. After a rapid rise on axis due to

the initial shock interaction, hTti spreads outward (which we

argued in Sec. II D was due to convective outflow and mix-

ing) while its peak value remains relatively constant. Hence,

during the compression phase t � 0 ns, the stagnating plasma

appears to evolve towards the isothermal solution, with

hTtðrÞi ¼ T0, a constant in space and time, approximately

equal to its value on axis hTtðr ¼ 0Þi.

The time independence of T0 determines the effective

adiabatic index ceff as discussed in Sec. II C. From Eq. (6),

the temperature increases with rising density as Tt / qcef f�1.

Because T0 is relatively constant during the compression

phase, ceff� 1, as argued in Sec. II D. Therefore, we will

apply the ceff� 1, isothermal homogeneous stagnation solu-

tion to the 3D simulation.

This solution predicts a Gaussian density profile (36)

and linear velocity profile (29). In Fig. 20, we plot hqi and

hvriq from 3D simulation at t¼�1 ns, early in the compres-

sion phase of stagnation, along with theoretical fits from the

isothermal solution. The agreement is reasonable for

r � 0:3 mm. Let us see how the theoretical profiles will stag-

nate compared to the 3D simulation.

Recall from Sec. IV B that to utilize the stagnation solu-

tion, at initial time �ti we must specify Ri (see Eq. (40)), Ui

(41) and �i (42). We can determine Ri from Eqs. (17), (30),

and (36), which predict that at initial time �ti; qðr;�tiÞ
¼ qf

hð�tiÞ2
e
�1

2
r

Rið Þ
2

. Figure 20(a) implies a�1=ð2R2
i Þ¼7e6=m2,

so Ri¼0.267mm and Ui¼vrðRiÞ¼�3:9e5m=s. To determine

�i we recall from Eq. (42)

�i ¼
pf

qf U
2
i

¼ pf=h �tið Þ2

qf=h �tið Þ2

 �

U2
i

¼ p r ¼ 0;�tið Þ
q r ¼ 0;�tið ÞU2

i

� pi

qiU
2
i

(49)

where in the second to last equality we have used Eqs. (30)

and (31), with c¼ 1, to relate the maximum on-axis pressure

pf and density qf to the initial pressure pi and density qi.

Choosing the initial time �ti to correspond with �1 ns in

the 3D simulation, we obtain from 3D simulation pi

¼ 3:9e12 J=m3 and qi ¼ 84:2 kg=m3, so that �i � 0:3.

With the parameters Ri;Ui; �i, we can determine how the

isothermal, ceff¼ 1 homogeneous stagnation solution will

evolve. From Eq. (46), we determine the effective confinement

time t0 � 0:236 ns, and, from Eq. (47), we determine the stag-

nation time ti � 0:86 ns. We now consider the time evolution

of the on-axis density. From Eqs. (30) and (36), qðr ¼ 0; tÞ
¼ qf =hðtÞ2, where the peak density qf is determined by Eq.

(44): qf ¼ qie
1=�i ¼ (84.2 kg/m3)(28)� 2360 kg/m3. The time

law h(t) is determined by t(h) in Eq. (38). Rather than attempt-

ing to invert this relation to obtain h(t), we determine q(t) para-

metrically by plotting the pair ðtðhÞ; qðhÞ ¼ qf=h2Þ, where

tðhÞ ¼ �t0

ffiffi
p
2

p
erfið

ffiffiffiffiffiffiffi
lnh
p

Þ.
However, to compare to the 3D simulation, we must add

a time offset to t(h). Recall that in the stagnation solution,FIG. 19. hTi þ ZTei from 3D simulation.

FIG. 20. hqi; hvriq from 3D simulation at t¼�1 ns (solid) and theoretical

profiles from isothermal, homogeneous stagnation solution (dashed).
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the peak compression is assumed to occur at t¼ 0, a time

interval ti after the initial time. We chose t¼�1 ns in the 3D

simulation as the initial time, and determined ti� 0.86 ns.

Hence, the stagnation solution predicts peak compression

will occur at �1þ 0.86¼�0.14 ns (in the time scale used in

the 3D simulation), and we must add this time offset to t(h):

t hð Þ ¼ �1:4� 10�10 � 2:36� 10�10ð Þ
ffiffiffi
p
2

r
erfi

ffiffiffiffiffiffiffi
lnh
p� �

: (50)

The determination of p(t) follows similarly. From Eqs.

(31) and (36), for a cef f � 1 plasma, the on-axis pressure fol-

lows pðtÞ ¼ pf=hðtÞ2, where peak pressure pf is determined

by pf ¼ pih
2
i ¼ pie

1=�i � 1.09e14 J/m3. Hence, p(t) is deter-

mined by ðtðhÞ; pðhÞ ¼ 1:09e14=h2Þ, where t(h) is given by

Eq. (50). Finally, to determine the slope of the velocity m(t),
we use Eq. (39) to obtain mðhÞ ¼ 4:24e9

ffiffiffiffiffiffiffiffiffi
2lnh
p

=h.

These theoretical predictions qðtÞ; pðtÞ;mðtÞ are com-

pared with their 3D counterparts in Fig. 11. The duration of

the compression phase ti is similar in the 3D simulation and

isothermal stagnation solution. However, the latter com-

presses much more deeply than in 3D, achieving higher den-

sity and pressure.

B. ceff� 1, isothermal homogeneous stagnation with
enhanced �i

As seen in Sec. II E, during compression, the core

plasma exhibits significant centrifugal force, which aids the

thermal pressure in resisting compression. Hence, it is rea-

sonable that the 1D isothermal stagnation solution, which

only accounts for the thermal pressure, exhibits higher com-

pression than the 3D simulation. In the stagnation solution,

the role of thermal pressure is captured by the parameter

�i ¼
Ð

pdV=
Ð

1
2
qv2dV. As the initial pressure p increases, �i

increases, and the compression decreases (see Eq. (44)). We

surmise that the “hydrodynamic pressure” due to non-radial

velocity terms, as discussed in Sec. II E, leads to an effec-

tively higher �i, thus decreasing peak compression.

Let us consider an enhanced value of �i¼ 0.55 while

keeping Ri¼ 0.267 mm and Ui¼�3.9e5 m/s, the same as in

Sec. VI A. The enhanced �i results in lower peak density

qf ¼ qie
1=�i ¼ (84.2 kg/m3)(6.16)¼ 518.7 kg/m3 and pressure

pf ¼ pie
1=�i ¼ 2:4e13J=m3. Also, the effective confinement

time t0¼ 0.37 ns is enhanced, and the stagnation time

ti¼ 0.7 ns is slightly reduced. Consequently, the time offset

discussed in Sec. VI A is modified to �1þ 0.7¼�0.3 ns,

resulting in

t hð Þ ¼ �3� 10�10 � 3:7� 10�10ð Þ
ffiffiffi
p
2

r
erfi

ffiffiffiffiffiffiffi
lnh
p� �

: (51)

In exactly the same way as before, we determine q(t), p(t),
m(t), which are illustrated in Fig. 18. The enhanced pressure

associated with �i¼ 0.55 results in much better agreement

with the 3D simulation.

Although the stagnation solution with enhanced �i is

able to describe the compression of on-axis plasma, it cannot

completely describe the dynamics of the stagnating core. In

particular, the homogeneous stagnation assumes a

hydrodynamically “isolated” plasma, with a fixed amount of

internal and kinetic energy. In contrast, in 3D simulation, the

stagnating core is constantly bombarded by imploding

plasma, which adds internal and kinetic energy into the core

as it accretes on the boundary, just as in the shock solution.

Consequently, while the homogeneous stagnation describes

the compression on axis for t��0.3 ns, during this same

time interval, the shock solution better describes the growth

of the core boundary, as seen in Fig. 17(b) and discussed in

Sec. V B. Hence, comparison of 1D theory to 3D simulation

can be tricky: different theories may simultaneously describe

different aspects of the plasma.

VII. ROLE OF MAGNETIC FIELD AT STAGNATION

In Ref. 40, the authors argue from experimental consid-

erations that the magnetic pressure pB is not important in the

overall pressure balance at stagnation, which is dominated

by p and pram. Figures 3 and 4 support this claim, with

b ¼ p0=pB;0 � 5, where p0 and pB,0 are the peak plasma pres-

sure and magnetic pressure, respectively, at a given time.

The core only carries a fraction of the full current, with the

remainder flowing in the imploding plasma. For instance, at

t¼ 0.4 ns, the core (defined by Rp¼1e12) only carries 6 MA of

the full 11 MA. We emphasize that b� 1 probably does not

hold in strongly radiating systems, which cannot sustain high

core pressures. Furthermore, lower pressure results in higher

compression and higher pB / 1=r2.

Returning to the radiation-free case, we now consider

how B affects the two solutions used to interpret the 3D sim-

ulations. First, the homogeneous, isothermal stagnation con-

sidered in Sec. IV B can be generalized to the ideal MHD

equivalent by adding an azimuthal magnetic field Bh.
15–17

This field further compresses the plasma relative to the

Bh¼ 0 case, by an amount determined by b. For b� 5, the

additional compression is very small relative to the Bh¼ 0

case, so we do not introduce significant error by ignoring

Bh.

Regarding the shock solution, we may also generalize to

the ideal MHD case, as done by Velikovich et al.71 Whereas

in the Bh¼ 0 case, an unshocked fluid element travels

towards axis with a constant velocity, in the Bh 6¼ 0 case, the

fluid element accelerates inwards. However, looking at Fig.

3(c), the flat portion of the velocity profile rises very little

with time, so the acceleration is not significant over the rela-

tively short stagnation time.

Finite Bh will also modify the shock solution by reduc-

ing the shock compression, as is well known (cf. Ref. 74).

To estimate the reduction, we require the plasma beta in the

unshocked plasma b1 ¼ p1

B2
h1
=2l0

and Mach number M¼ u1/cs1.

Here, u1 is the velocity of the imploding plasma in the frame

of the expanding shock, and cs1 is the sound speed in the

imploding plasma. In the phase 2 imploding plasma, which

is when the 3D simulation exhibits the shock solution, M �
11; b1 � 0:3; c � 1:3 are typical values. For these values,

the shock jump q2=q1 � 4:5, while in the equivalent Bh¼ 0

case, q2=q1 � 7:3. Hence, finite Bh can definitely reduce the

shock compression. However, we do not expect this to sig-

nificantly alter our conclusions.
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Finally, during the short (<3 ns) time interval during

which plasma stagnates on axis, we do not see the gross de-

velopment of MHD instabilities in the core. This observation

is consistent with an estimate of the MHD instability time

R=vA � 1:3 ns, where R is the core radius and vA is the

Alfven velocity at r¼R.

VIII. CONCLUSION AND DISCUSSION

In this work, we investigated the connection between

3D MHD simulation, which may realistically model the

plasma but can be difficult to physically interpret, and 1D

theory. In particular, we focused on two 1D stagnation solu-

tions: a strong shock scenario based off the Noh solution

(Sec. IV A) and a homogeneous (i.e. shockless) stagnation

(Sec. IV B). Comparison between 1D theory and 3D simula-

tion is nontrivial due to 3D spatial non-uniformity. For

instance, we cannot observe a clear shock boundary in the

axially and azimuthally averaged 3D profiles, due to the

shock occurring at different locations at a given time.

Nonetheless, the time evolution of axially averaged, on-axis

density q and pressure p, as well as the slope of the radial ve-

locity profile, m, are useful for comparison to theory.

Furthermore, the axially and azimuthally averaged pressure

profile provides a reasonable estimate of the shock radius

Rp(t) (Sec. V B).

These metrics suggest that in 3D stagnation, the initial

accumulation of material near axis does not possess sufficient

azimuthal symmetry for the 1D shock solution to be realized

in a global sense. Relative to the “equivalent” 1D simulation

in Sec. III (which does exhibit a well-defined shock), the off-

axis, oblique collisions in 3D result in a larger, lower density

core with significant residual kinetic energy. The agreement

of on-axis q(t), p(t), m(t) with the homogeneous stagnation so-

lution through the compression phase (t� 0 ns) suggest the re-

sidual radial kinetic energy near axis is transformed to

internal energy in a nearly shockless fashion. However, this

solution must be modified to account for the additional effec-

tive pressure (i.e., centrifugal force) and enhanced thermal

transport driven by vortical flow in the core.

Once the on-axis density reaches its maximum at

t¼ 0 ns, the stagnated plasma expands outward into the

imploding plasma. The resulting decrease in on-axis q,p,m,

as well as the growth in core boundary Rp(t), qualitatively

agree with both the analytic shock solution and the equiva-

lent 1D simulation. Recall that during the initial phase of

stagnation, imploding plasma jets collide obliquely, resulting

in complicated flows that are difficult to describe in 1D.

However, later in time (t> 0 ns), a high-pressure core has

formed on axis, and the imploding jets collide with the core

rather than each other. Such a core-jet interaction is better

suited to 1D shock analysis. This behavior, combined with

decaying vortical motion in the core, leads to improved

agreement between 3D simulation, 1D simulation, and shock

theory. However, during this time, we still cannot ignore the

3D nature of the flow: unlike the equivalent 1D simulation,

in 3D, the core does not cool during expansion, which we

postulate is due to “channels” of plasma that carry heat and

kinetic energy to the core center (Sec. II D).

In conclusion, 1D stagnation solutions are useful in

interpreting and understanding 3D simulation, despite the

highly inhomogeneous flows observed there. In turn, 3D sim-

ulation enlightens our usage of 1D theory: the 3D flows sug-

gest enhanced thermal transport as well as effectively

enhanced pressure, due to centrifugal forces.

Even within the confines of this restricted study (i.e. no

radiation loss), many possibilities exist for future study,

including the role of axial flow (essentially ignored here), as

well as the mechanism by which the vortices dissipate.

Furthermore, the shear flows observed in Figs. 5 and 8, com-

bined with large Reynolds number (Re¼ ul/�i� (2e5 m/s)(4e-

4 m)/(1e-6 m2/s) �8e7) suggest the core is fertile ground for

turbulence, which will affect pressure balance through the

Reynolds stress tensor (see Refs. 75 and 76, and references

therein). However, the resulting small length scales (e.g.,

Taylor microscale �l=
ffiffiffiffiffiffi
Re
p

� 5e–8m) are beyond the scope

of these simulations, which use 20 lm zoning to remain

tractable.

In this work, we focused on a specific wire-array configu-

ration of fixed radius (1 cm), mass (1.15 mg), and material

(tungsten). It remains for future work to generalize to differ-

ent array configurations, as well as see how our conclusions

change when we allow radiation loss. Nonetheless, we have

achieved a deeper understanding of large-scale flow at stagna-

tion that will be helpful in understanding 3D stagnation in

wire arrays, and possibly other high-energy-density systems.

Furthermore, we hope that the metrics developed here for

comparison between 3D simulation and theory may be

extended to experiments in which the radiative losses are low.

For instance, measurement of the pre-stagnation density and

velocity profiles determine the unknowns v and k required by

the shock theory. We could then compare the evolution of on-

axis density during stagnation with shock theory ðqðtÞ / t
2v

1þkÞ,
as well as the shock radius growth ðRpðtÞ / t

1
1þkÞ.
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APPENDIX: ENERGY FLOW IN THE Z PINCH

Energy flow in a Z pinch can be visualized in cartoon-

fashion as water flowing through a series of buckets and

pipes, as illustrated in Fig. 21. The spigot at the top repre-

sents the generator, and the water level in each bucket
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represents the amount of magnetic, kinetic, or internal

energy in the system at a given time. The rate at which the

water level in a given bucket varies is determined by the

flow of water into and out of the bucket through the connect-

ing pipes, which represent energy conversion mechanisms.

In this way, we can visualize the flow of water from the

spigot to the magnetic energy bucket, which then flows into

the kinetic energy bucket during the implosion phase. At

stagnation, the kinetic energy converts into ion and electron

internal energy, which is then radiated away. We now exam-

ine each phase of the above process in more detail.

The spigot (i.e., generator) supplies Poynting flux to the

system. The Poynting theorem, combined with the MHD

Ohm’s law Eþ v�B¼ g j yields

@

@t

ð
B2

2l0

dV ¼ �
ð

E�Hð Þ � dS�
ð

v � j� Bð ÞdV

�
ð

j2

r
dV;

in which we have integrated over a fixed volume enclosing

the plasma. Physically, we can interpret this equation as fol-

lows: Poynting flux through the surface of the volume (2nd

term) increases the magnetic energy (1st term), which itself is

reduced by performing work on accelerating the plasma (3rd

term) as well as through Ohmic dissipation (4th term). In

terms of Fig. 21, the rate at which energy builds up in the

magnetic energy equals the rate at which energy flows from

the generator (via Poynting flux) minus the rate at which mag-

netic energy is lost through the two pipes exiting the bucket,

corresponding to Ohmic dissipation and j�B work done on

the plasma.

This j�B work increases the kinetic energy of the

plasma, the rate of increase of which is described by the ki-

netic energy equation, integrated over the plasma volume:

@

@t

ð
1

2
qv2dV ¼

ð
v � j� Bð ÞdV �

ð
r0ik

@vi

@xk
dV

þ
ð

pi þ peð Þ r � vð ÞdV;

where pi and pe are the ion and electron pressures, respec-

tively, and rik
0 is the viscosity tensor. In words, the rate at

which plasma kinetic energy increases (1st term) is deter-

mined by the rate at which j�B work is done on the plasma

(2nd term) minus the rate at which kinetic energy is dissi-

pated through viscosity (3rd term) and converted to plasma

internal energy through pdV work (4th term). Of course, the

last term can also increase the kinetic energy if the plasma is

expanding. Referring back to Fig. 21, the rate at which

energy builds up in the kinetic energy bucket equals the rate

at which magnetic energy is converted through the j�B

“pipe” minus the rate at which kinetic energy converts to in-

ternal energy through the pdV and viscous dissipation pipes.

The ion energy equation can be written as

@

@t

ð
qeidV ¼ �

ð
pir � vdV þ

ð
r0ik

@vi

@xk
dV

þ
ð

3

2
nekb

Te � Ti

seq
dV;

where the first term represents the rate of change of ion inter-

nal energy. The second term describes how the ion internal

energy increases as the plasma compresses on axis, due to

pidV work. The third term accounts for the increase in inter-

nal energy as the kinetic energy is dissipated by viscosity

during collisions. The final term is the ion-electron energy

exchange term.

Last, the electron energy equation yields

@

@t

ð
qeedV ¼ �

ð
per � vdV �

ð
3

2
nekb

Te � Ti

seq
dV

þ
ð

j2

r
dV � Prad;

where the first two terms are the electron analog to the first

two terms in the ion energy equation. The fourth and fifth

terms represent Joule heating and radiation loss, respectively.
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