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Collisionless plasma

• Plasma Reflection
• Magnetic-Field

Energy Dissipation

⇒

Ref: M. Rosenbluth (1954)

Composition plays no role!!!In the frame
of moving B-field
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Highly-collisional plasma

• Field Penetration by 
Diffusion 

• Energy Dissipation ≅ ηj2

(η-resistivity)
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The Puzzle
Low-collisionality plasma (ne ≅ 1014 cm-3)

Probe measurements show Fast 
Penetration of B into the Plasma
B. Weber at al. (1984)

Energy dissipation:

Ee ~ 8 keV/electron

R. Kulsrud et al. (1988)
R. Sudan et al. (1988)
η must be low
No Diffusion



Ion motion was neglected.
EMHD

Energy is dissipated on 
electrons (~8 keV/electron)

Composition plays no role.

Penetration due to the Hall-Field effect

A. FruchtmanA. Gordeev, 
L. Rudakov, 
A. Kingsep
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Plasma Interaction with Pulsed 
magnetic Fields

The problem is manifested in:

• Space Physics (Solar flares, Solar wind, Bow 
shocks, Coronal mass ejection).

• Transmission of high-energy pulses.

• Fusion research (Magnetic Fusion, Plasma 
Compression)

• Hall-Thrusters for space crafts.



Experiment
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B ~ 1 T

 

 

Time [ns]

Generator current200 kA

Ne~1014 cm-3; Te ~ 6 eV

Plasma Composition:

Variable fractions of protons and C3+

Proton fraction = 0.08 ÷ 0.3 of total mass
D. Osin, R. Doron et al. (2003)

R. Arad, K. Tsigutkin et al. Phys Plasmas (2000)

A. Weingarten, V. Bernshtam et al. Phys Plasmas (1999)



Diagnostics

R. Arad et al. (2001)
A. Weingarten et al. 
(1999)
Emission 
spectroscopy.

K. Tsigutkin et al. 
(2003, 2004)
E. Stambulchik (2003)
Laser spectroscopy,
Dipole-forbidden 
transitions,
Stark broadening.

• Doping ⇒
3D spatially resolved 
measurements.

• Temporal resolution 5 ns.
• Spectral region:

2000-7000 Å

Spectrographs.
Streak cameras.



Magnetic Field Measurements
Zeeman splitting of Doped-HeI line

(2p 1P - 3d 1D λ=6678 Å).
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are seen since the 
observations are performed 
along the magnetic field.



• Stark shift
• Spectral line shapes
• Anisotropic Stark broadening
• Intensity of forbidden lines

Electric fields
Zeeman splittingMagnetic field

MethodParameter

• Line intensities
• Ionization times
• Atomic-physics modeling
• Different-spin transitions

Electron temperature and 
Electron Energy 
Distribution (EED)

• Stark broadening
• Evolution of line intensities

Electron density
Doppler line shapesIon velocity distributions

Techniques for Measuring Electromagnetic 
Fields and Plasma Properties



Magnetic field evolution
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1. The distribution shows fast 
penetration

2. Magnetic field propagation 
velocity and profile are 
inconsistent with diffusion.

3. Strongly suggests Hall-field 
effect

Magnetic field distribution
along z-axis
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Ion velocities from Doppler shifts

IONS ARE SLOWER than the front of B ⇒
Consistent with the present theoretical treatments.
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Field penetration and electron density
time dependence

3D-resolved measurements of B(t) and ne(t)
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Ions Move.



Proton velocity from charge 
exchange spectroscopy
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R. Arad, K. Tsigutkin et al., to appear in Phys. 
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Ion separation
(Penetration and Reflection)
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• Protons attain velocities that are about twice 

the magnetic Field velocity.

• Non-Protonic ions have velocities much lower 

than the Field.



Ion separation in Multi-Species Plasmas
Field penetration and plasma reflection can occur 

simultaneously
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Solution based on Energy and 
Momentum Balance
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the dissipated energy and most of 

the magnetic field momentum 
even though their fractional mass 

in the plasma is only 20%.

Electrons should only acquire
~1.3 keV/electron.

A. Weingarten, R. Arad et al.

PRL (2001)
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Electron Energy Distribution Across the 
Magnetic-Field Front

High-lying levels are used:
C2+ (18 eV), C3+ (54 eV),
and C4+ (304 eV);
Inner-shell Excitations:
C3+ 2p 2P → C4+ 1s2p (400 eV)
C3+ 1s2 → C4+ 1s2s (400 eV)
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Light-Ion reflection at V> 2VB due to 
time-dependent potential hill
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Relevance to Space Physics

NASA RHESSI satellite: “New observations revealed that 
solar flares somehow sort particles, either by their masses or 
their electric charge”

NASA ACE satellite: A reflected cool proton beam observed 
upstream of an interplanetary shock as well as scattered 
diffuse ions. (Tokar et al., April 2000)

ESA Cluster satellites: Observation of Ion reflection and 
transmission at the quasi-perpendicular earth bow shock 
(Kucharek et al., April 2003)

NASA Report, September 2003

R. Doron, et al., and J. Huba,
H. Strauss, R. Doron, Y. Maron,
J. Drake (University of Maryland)

Phys. Plasmas (2004)
APS meeting, Nov. 2004



High-resolution spectroscopy

The intensity of forbidden 
transitions is a precise 
tool for determination of 
electric fields.
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E-field measurements in the current-
carrying plasma
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A nature of the observed E-field reveals mechanism of the B-field-plasma 
interaction. In the case of the enhanced turbulence, anomalous collisions lead 
to B-field diffusion. Alternatively, the Hall E-field indicates MHD mechanism.
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Magnetic vortex
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Summary
• Observed fast field-penetration strongly suggests a role 

of the Hall-term.
• Field penetration and plasma reflection can occur 

simultaneously accompanied by ion separation.
• Composition plays an important role.
• This helps to understand the energy dissipation.
• Ions can be reflected with a velocity > 2×vB (B-field)
• Theoretical modeling is required.

The data are now used to examine simulations, including 
those used in space-physics research.

• Important for basic Plasma Physics, Applications, and 
Space-Physics.



THERE ARE 3-4 THINGS THAT ARE 
MIRACLES FOR ME:

THE WAY OF A SNAKE ON STONES.
THE WAY OF AN EAGLE IN THE SKY.
THE WAY OF A MAN AND A WOMAN,

------------------
AND THE WAY OF MAGNETIC FIELDS IN 
PLASMAS.

MISHLEY


