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Collisionless plasma
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Composition plays no role!!!
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Highly-collisional plasma

J
VY Yoy

NY

* Field Penetration by
Diffusion

* Energy Dissipation = nj?
(n-resistivity)

B A

In 1D approximation:

2
B_C Tv?B+V x (v, x B)
ot 4rn




The Puzzle

Low-collisionality plasma (n, = 1014 cm-3)
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Probe measurements show Fast R. Kulsrud et al. (1988)
Penetration of B into the Plasma R. Sudan et al. (1988)

B. Weber at al. (1984) n must be low

No Diffusion

Enerqy dissipation:

E. ~ 8 keV/electron




Penetration due to the Hall-Field effect
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Fast penetration due to the Hall-field
effect
Current channel
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Plasma Interaction with Pulsed
magnetic Fields

The problem is manifested in:

Space Physics (Solar flares, Solar wind, Bow
shocks, Coronal mass ejection).

—>

Transmission of high-energy pulses. C'%

Fusion research (Magnetic Fusion, Plasma
Compression)

Hall-Thrusters for space crafts.




Experiment

Current

Y /

Generator current

B~1T

N,~10%cm3; T, ~ 6 eV
Plasma Composition:

Variable fractions of protons and C3*

Proton fraction = 0.08 + 0.3 of total mass
D. Osin, R. Doron et al. (2003)
R. Arad, K. Tsigutkin et al. Phys Plasmas (2000)
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Diagnostics

Laser
for optical -
Current purr_l\ping asma To Fast-Spectroscopy
Generator_ \ anodei _____________________ System Spectrographs.
- e e Streak cameras.
L St de- '''''''''''' Time-dependent
Line Intensities
Dopant and Spectral Profiles
Injector
Doping = K. Tsigutkin et al. R. Arad et al. (2001)
3D spatially resolved (2003, 2004) A. Weingarten et al.
measurements E. Stambulchik (2003) ~ (1999)

Temporal resolution 5 ns.

Spectral region:
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Laser spectroscopy,

Dipole-forbidden
transitions,

Stark broadening.

Emission
spectroscopy.



Magnetic Field Measurements

Zeeman splitting of Doped-Hel line
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Techniques for Measuring Electromagnetic
Fields and Plasma Properties

Parameter Method
Magnetic field Zeeman splitting
Electric fields Stark shift

Spectral line shapes
Anisotropic Stark broadening
Intensity of forbidden lines

lon velocity distributions

Doppler line shapes

Electron density

Stark broadening
Evolution of line intensities

Electron temperature and
Electron Energy
Distribution (EED)

Line intensities
lonization times
Atomic-physics modeling
Different-spin transitions




Magnetic field evolution
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Magnetic field [T]

Magnetic field distribution
along z-axis
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1 .
noc— IS known.
1.

T, Is determined
from level-population ratios.

1. The distribution shows fast

penetration

2. Magnetic field propagation

velocity and profile are
Inconsistent with diffusion.

3.  Strongly suggests Hall-field

effect

Vi = B ~3x10cm/s
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lon velocities from Doppler shifts

Normalized ion velocity
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IONS ARE SLOWER than the front of B =
Consistent with the present theoretical treatments.




Field penetration and electron density
time dependence

Magnetic Field [kG]

3D-resolved measurements of B(t) and n(t)
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Proton velocity from charge
exchange spectroscopy
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lon separation
(Penetration and Reflection)
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Protons attain velocities that are about twice

the magnetic Field velocity.

Non-Protonic ions have velocities much lower

than the Field.




lon separation in Multi-Species Plasmas

Field penetration and plasma reflection can occur
simultaneously

In the frame of the B ° 0%’ :’: 0 8
moving Field Heavy Light
lons lons
v.oy, LowzM
‘ C. Mendel (1983): potential
O hill in collisionless plasmas,

High Z/M but no field penetration.

R. Doron, D. Osin, R. Arad,
K. Tsigutkin (2004)
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Electron Energy Distribution Across the
Magnetic-Field Front

High-lying levels are used:
C?* (18 eV), C** (54 eV),
and C4* (304 eV);
Inner-shell Excitations:
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Light-lon reflection at V> 2V; due to
time-dependent potential hill
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Relevance to Space Physics

NASA Report, September 2003

NASA RHESSI satellite: “New observations revealed that
solar flares somehow sort particles, either by their masses or
their electric charge”

NASA ACE satellite: A reflected cool proton beam observed
upstream of an interplanetary shock as well as scattered
diffuse ions. (Tokar et al., April 2000)

ESA Cluster satellites: Observation of lon reflection and

transmission at the quasi-perpendicular earth bow shock
(Kucharek et al., April 2003)

R. Doron, et al., and J. Huba, Phys. Plasmas (2004)
H. Strauss, R. Doron, Y. Maron, APS meeting, Nov. 2004
J. Drake (University of Maryland)
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Knowledge of B(z,t) & n (z,t)
allows for determlnlng
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E-field measurements in the current-
carrying plasma
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A nature of the observed E-field reveals mechanism of the B-field-plasma
interaction. In the case of the enhanced turbulence, anomalous collisions lead
to B-field diffusion. Alternatively, the Hall E-field indicates MHD mechanism.




Experimental current lines :
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K. Gomberoff and A. Fruchtman Physics of Fluids B, 1993



Summary

Observed fast field-penetration strongly suggests a role
of the Hall-term.

Field penetration and plasma reflection can occur
simultaneously accompanied by ion separation.

Composition plays an important role.
This helps to understand the energy dissipation.
lons can be reflected with a velocity > 2xvg (B-field)

Theoretical modeling Is required. o _
he data are now used to examine simulations, including
those used In space-physics research.

Important for basic Plasma Physics, Applications, and
Space-Physics.



THERE ARE 3-4 THINGS THAT ARE
MIRACLES FOR ME:

THE WAY OF A SNAKE ON STONES.
THE WAY OF AN EAGLE IN THE SKY.
THE WAY OF A MAN AND A WOMAN,

AND THE WAY OF MAGNETIC FIELDS IN
PLASMAS.

MISHLEY



