Plasma Laboratory - Weizmann Institute of Science

Spectral Line Shapes in Plasmas Workshops

This is a home to the SLSP (Spectral Line Shapes in Plasmas) code comparison workshop series.

Motivation

Line-shape analysis is one of the most important tools for diagnostics of both laboratory and space plasmas. Evidently, its reliable implementation requires sufficiently accurate calculations. The Stark broadening is the most computationally challenging contribution, with other factors (such as the Zeeman and Doppler effects) further complicating the calculations.

Except for limiting cases, line-shape calculations imply a usage of computer codes of varying complexity and requirements of computational resources. However, studies comparing different computational and analytical methods are almost nonexistent. This workshop purports to fill this gap. By detailed comparison of results for a selected set of case problems, it becomes possible to pinpoint sources of disagreements, infer limits of applicability, and assess accuracy.

Timeline

Discussion

Please use the forums for discussion.

Publications

2024

  • T. A. Gomez, E. Stambulchik, and J. White
    Impact of penetrating collisions of plasma ions on spectral line shapes
    Phys. Rev. A 109, 052804 (2024). DOI BibTeX PDF
  • Hannachi, I., Alexiou, S., and Stamm, R.
    Line shape code comparison of the effect of periodic fields on hydrogen lines
    Atoms 12, 19 (2024). DOI BibTeX PDF

2020

  • Rosato, J.
    Hydrogen line shapes in plasmas with large magnetic fields
    Atoms 8, 74 (2020). DOI BibTeX PDF

2019

  • E. Stambulchik, A. Calisti, H.-K. Chung, and M. Á. González
    Spectral Line Shapes in Plasmas II
    Atoms 7, 20 (2019). DOI BibTeX PDF

2018

  • Gilleron, F. and Pain, J.-C.
    ZEST: A fast code for simulating Zeeman–Stark line-shape functions
    Atoms 6, 11 (2018). DOI BibTeX
  • Rosato, J., Ferri, S., and Stamm, R.
    Influence of helical trajectories of perturbers on Stark line shapes in magnetized plasmas
    Atoms 6, 12 (2018). DOI BibTeX
  • S. Alexiou, E. Stambulchik, T. Gomez, and M. Koubiti
    The Fourth Workshop on Lineshape Code Comparison: Line merging
    Atoms 6, 13 (2018). DOI BibTeX PDF
  • Dimitrijević, M. S. and Chougule, A.
    Stark broadening of Cr III spectral lines: DO white dwarfs
    Atoms 6, 15 (2018). DOI BibTeX
  • R. R. Sheeba, M. Koubiti, N. Bonifaci, F. Gilleron, J.-C. Pain, and E. Stambulchik
    Broadening of the neutral helium 492-nm line in a corona discharge: Code comparisons and data fitting
    Atoms 6, 19 (2018). DOI BibTeX PDF
  • Gomez, T., Nagayama, T., Fontes, C., Kilcrease, D., Hansen, S., Montgomery, M., and Winget, D.
    Matrix methods for solving Hartree-Fock equations in atomic structure calculations and line broadening
    Atoms 6, 22 (2018). DOI BibTeX
  • C. Stollberg, E. Stambulchik, B. Duan, M. A. Gigosos, D. González Herrero, C. A. Iglesias, and C. Mossé
    Revisiting Stark width and shift of He II Pα
    Atoms 6, 23 (2018). DOI BibTeX PDF
  • R. R. Sheeba, M. Koubiti, N. Bonifaci, F. Gilleron, C. Mossé, J.-C. Pain, J. Rosato, and E. Stambulchik
    Hβ line in a corona helium plasma: A multi-code line shape comparison
    Atoms 6, 29 (2018). DOI BibTeX PDF
  • S. Sahal-Bréchot, E. Stambulchik, M. S. Dimitrijević, S. Alexiou, B. Duan, and N. Bonifaci
    The Third and Fourth Workshops on Spectral Line Shapes in Plasma Code Comparison: Isolated lines
    Atoms 6, 30 (2018). DOI BibTeX PDF
  • Demura, A. V.
    Beyond the linear Stark effect: A retrospective
    Atoms 6, 33 (2018). DOI BibTeX
  • Mossé, C., Génésio, P., Bonifaci, N., and Calisti, A.
    A new procedure to determine the plasma parameters from a genetic algorithm coupled with the spectral line-shape code PPP
    Atoms 6, 55 (2018). DOI BibTeX

2017

  • Rosato, J.
    Report on the third SLSP code comparison workshop
    High Energy Density Phys. 22, 60–63 (2017). DOI BibTeX

2014

  • S. Alexiou, M. S. Dimitrijević, S. Sahal-Brechot, E. Stambulchik, B. Duan, D. González-Herrero, and M. A. Gigosos
    The Second Workshop on Lineshape Code Comparison: Isolated Lines
    Atoms 2, 157-177 (2014). DOI BibTeX PDF
  • A. Calisti, A. Demura, M. A. Gigosos, D. González-Herrero, C. A. Iglesias, V. S. Lisitsa, and E. Stambulchik
    Influence of microfield directionality on line shapes
    Atoms 2, 259–276 (2014). DOI BibTeX PDF
  • S. Ferri, A. Calisti, C. Mossé, J. Rosato, B. Talin, S. Alexiou, M. A. Gigosos, M. Á. González, D. González-Herrero, N. Lara, T. Gomez, C. A. Iglesias, S. Lorenzen, R. C. Mancini, and E. Stambulchik
    Ion dynamics effect on Stark broadened line shapes: A cross comparison of various models
    Atoms 2, 299–318 (2014). DOI BibTeX PDF
  • B. Duan, M. A. Bari, Z. Wu, and J. Yan
    Electron-impact widths and shifts of B III 2p–2s lines
    Atoms 2, 207–214 (2014). DOI BibTeX
  • V. S. Lisitsa, M. B. Kadomtsev, V. Kotov, V. S. Neverov, and V. A. Shurygin
    Hydrogen spectral line shape formation in the SOL of fusion reactor plasmas
    Atoms 2, 195–206 (2014). DOI BibTeX
  • B. Omar, M. Á. González, M. A. Gigosos, T. S. Ramazanov, M. C. Jelbuldina, K. N. Dzhumagulova, M. C. Zammit, D. V. Fursa, and I. Bray
    Spectral line shapes of He I line 3889 Å
    Atoms 2, 277–298 (2014). DOI BibTeX
  • J. Rosato, H. Capes, and R. Stamm
    Ideal Coulomb plasma approximation in line shape models: Problematic issues
    Atoms 2, 253–258 (2014). DOI BibTeX
  • S. Sahal-Bréchot, M. S. Dimitrijević, and N. B. Nessib
    Widths and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: An outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations
    Atoms 2, 225–252 (2014). DOI BibTeX
  • M. Koubiti, M. Goto, S. Ferri, S.B. Hansen, and E. Stambulchik
    Line-shape code comparison through modeling and fitting of experimental spectra of the C II 723-nm line emitted by the ablation cloud of a carbon pellet
    Atoms 2, 319–333 (2014). DOI BibTeX PDF
  • A. Demura and E. Stambulchik
    Spectral-kinetic coupling and effect of microfield rotation on Stark broadening in plasmas
    Atoms 2, 334–356 (2014). DOI BibTeX PDF
  • M. S. Dimitrijević and S. Sahal-Bréchot
    On the application of Stark broadening data determined with Semiclassical Perturbation approach
    Atoms 2, 357–377 (2014). DOI BibTeX
  • E. Stambulchik, A. Calisti, H.-K. Chung, and M. Á González
    Special Issue on Spectral Line Shapes in Plasmas
    Atoms 2, 378–381 (2014). DOI BibTeX PDF

2013

  • E. Stambulchik
    Review of the 1st Spectral Line Shapes in Plasmas code comparison workshop
    High Energy Density Phys. 9, 528–534 (2013). DOI BibTeX PDF
  • R. C. Mancini, C. A. Iglesias, S. Ferri, A. Calisti, and R. Florido
    The effect of improved satellite line shapes on the argon Heβ spectral feature
    High Energy Density Phys. 9, 731–736 (2013). DOI BibTeX


^ Top
Modified on: 2024-05-02

Previous page: Atomic data
Next page: 1st SLSP Workshop